Suppr超能文献

基于 HPTLC 指纹图谱和多元图像分析的靶向黄酮类化合物测定快速鉴别不同伞形科物种。

Rapid discrimination of different Apiaceae species based on HPTLC fingerprints and targeted flavonoids determination using multivariate image analysis.

机构信息

Department of Pharmacognosy, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt.

出版信息

Phytochem Anal. 2018 Sep;29(5):452-462. doi: 10.1002/pca.2749. Epub 2018 Feb 11.

Abstract

INTRODUCTION

Species of Apiaceae are used in folk medicine as spices and in officinal medicinal preparations of drugs. They are an excellent source of phenolics exhibiting antioxidant activity, which are of great benefit to human health. Discrimination among Apiaceae medicinal herbs remains an intricate challenge due to their morphological similarity.

OBJECTIVE

In this study, a combined "untargeted" and "targeted" approach to investigate different Apiaceae plants species was proposed by using the merging of high-performance thin layer chromatography (HPTLC)-image analysis and pattern recognition methods which were used for fingerprinting and classification of 42 different Apiaceae samples collected from Egypt.

METHODOLOGY

Software for image processing was applied for fingerprinting and data acquisition. HPTLC fingerprint assisted by principal component analysis (PCA) and hierarchical cluster analysis (HCA)-heat maps resulted in a reliable untargeted approach for discrimination and classification of different samples. The "targeted" approach was performed by developing and validating an HPTLC method allowing the quantification of eight flavonoids.

RESULTS

The combination of quantitative data with PCA and HCA-heat-maps allowed the different samples to be discriminated from each other.

CONCLUSION

The use of chemometrics tools for evaluation of fingerprints reduced expense and analysis time. The proposed method can be adopted for routine discrimination and evaluation of the phytochemical variability in different Apiaceae species extracts.

摘要

简介

伞形科物种被用作民间药物中的香料和药用制剂中的药物。它们是酚类物质的极好来源,具有抗氧化活性,对人类健康非常有益。由于它们的形态相似,因此对伞形科草药进行鉴别仍然是一个复杂的挑战。

目的

本研究提出了一种结合“非靶向”和“靶向”方法,通过合并高效薄层色谱(HPTLC)-图像分析和模式识别方法,对从埃及采集的 42 种不同伞形科样本进行指纹图谱分析和分类,该方法用于研究不同的伞形科植物。

方法

应用图像处理软件进行指纹图谱分析和数据采集。HPTLC 指纹图谱辅助主成分分析(PCA)和层次聚类分析(HCA)-热图可用于对不同样本进行可靠的非靶向鉴别和分类。“靶向”方法是通过开发和验证允许定量分析八种类黄酮的 HPTLC 方法来实现的。

结果

将定量数据与 PCA 和 HCA-热图相结合,能够区分不同的样品。

结论

使用化学计量学工具评估指纹图谱可以降低成本和分析时间。该方法可用于常规鉴别和评估不同伞形科物种提取物中的植物化学变异性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验