Suppr超能文献

利用机器学习方法和DNA条形码数据库对交易中的阿育吠陀生药掺假情况进行量化分析。

Quantification of adulteration in traded ayurvedic raw drugs employing machine learning approaches with DNA barcode database.

作者信息

Dev Suma Arun, Unnikrishnan Remya, Jayaraj R, Sujanapal P, Anitha V

机构信息

Forest Genetics and Biotechnology Division, Kerala Forest Research Institute, Peechi, Thrissur, 680653 Kerala India.

Cochin University of Science and Technology, Kochi, Kerala India.

出版信息

3 Biotech. 2021 Nov;11(11):463. doi: 10.1007/s13205-021-03001-5. Epub 2021 Oct 18.

Abstract

UNLABELLED

Adulteration of expensive raw drugs with inferior taxa has become a routine practice, conceding the quality and safety of derived herbal products. In this regard, the study addresses the development of an integrated approach encompassing DNA barcode and HPTLC fingerprinting to authenticate chiefly traded ayurvedic raw drugs in south India [viz. (Roxb.) Willd., (Roxb. ex DC.) Wight and Arn., L. and (L.) DC.] from its adulterants. Consortium of Barcode of Life (CBOL) recommended DNA barcode gene regions viz. nuclear ribosomal-Internal Transcribed Spacer (nrDNA-ITS), maturase K (K), ribulose-1,5-bisphosphate carboxylase/oxygenase large subunit (L) and A-H spacer regions along with HPTLC profiling were experimented and a reference database was created. Further, an integrated analytical approach employing genetic distance-based Maximum Likelihood phylogenetic tree and Artificial Intelligence (AI)based Machine Learning Algorithms (MLA)-Waikato Environment for Knowledge Analysis (WEKA) and Barcoding with Logic (BLOG) were employed to prove efficacy of DNA barcode tool. Even though, among the four barcodes, A-H ( and its adulterants, and its adulterants) or ITS region ( and its adulterants, and its adulterants) showed highest inter specific divergences in the selected Biological Reference Materials (BRMs), L or K barcode regions alone were successful for authentication of traded samples. The automated species identification techniques, WEKA and BLOG, experimented for the first time in India for raw drug validation, could achieve rapid and precise identification. A national certification agency for raw drug authentication employing an integrated approach involving a DNA barcoding tool along with standard organoleptic and analytical methods can strengthen and ensure safety and quality of herbal medicines in India.

SUPPLEMENTARY INFORMATION

The online version contains supplementary material available at 10.1007/s13205-021-03001-5.

摘要

未标记

用劣质分类群掺假昂贵的原料药已成为一种常见做法,这危及了衍生草药产品的质量和安全。在这方面,该研究致力于开发一种综合方法,包括DNA条形码和高效薄层色谱指纹图谱,以鉴别印度南部主要交易的阿育吠陀原料药[即(罗克斯伯)威尔德、(罗克斯伯·埃克斯·德克)怀特和阿诺、L.和(L.)德克]及其掺假品。生命条形码联盟(CBOL)推荐的DNA条形码基因区域,即核糖体内部转录间隔区(nrDNA-ITS)、成熟酶K(K)、核酮糖-1,5-二磷酸羧化酶/加氧酶大亚基(L)和A-H间隔区,以及高效薄层色谱分析,进行了实验并创建了一个参考数据库。此外,采用基于遗传距离的最大似然系统发育树和基于人工智能(AI)的机器学习算法(MLA)——怀卡托知识分析环境(WEKA)和逻辑条形码(BLOG)的综合分析方法,以证明DNA条形码工具的有效性。尽管在四个条形码中,A-H(及其掺假品、及其掺假品)或ITS区域(及其掺假品、及其掺假品)在选定的生物参考材料(BRM)中显示出最高的种间差异,但仅L或K条形码区域就成功鉴别了交易样本。自动化物种识别技术WEKA和BLOG首次在印度用于原料药验证,能够实现快速准确的识别。一个采用包括DNA条形码工具以及标准感官和分析方法的综合方法的国家原料药认证机构,可以加强并确保印度草药的安全和质量。

补充信息

在线版本包含可在10.1007/s13205-021-03001-5获取的补充材料。

相似文献

本文引用的文献

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验