Suppr超能文献

液体在软固体上扩展时耗散的几何控制。

Geometrical control of dissipation during the spreading of liquids on soft solids.

机构信息

Matière et Systèmes Complexes, CNRS UMR 7057, Université Paris Diderot, Sorbonne Paris Cité University, F-75013 Paris, France.

Laboratoire Sciences et Ingénierie de la Matière Molle, Paris Sciences et Lettres Research University, École Supérieure de Physique et de Chimie Industrielles de la Ville de Paris, CNRS, F-75231 Paris Cedex 05, France.

出版信息

Proc Natl Acad Sci U S A. 2018 Feb 20;115(8):1748-1753. doi: 10.1073/pnas.1712562115. Epub 2018 Feb 5.

Abstract

Gel layers bound to a rigid substrate are used in cell culture to control differentiation and migration and to lower the friction and tailor the wetting of solids. Their thickness, often considered a negligible parameter, affects cell mechanosensing or the shape of sessile droplets. Here, we show that the adjustment of coating thickness provides control over energy dissipation during the spreading of flowing matter on a gel layer. We combine experiments and theory to provide an analytical description of both the statics and the dynamics of the contact line between the gel, the liquid, and the surrounding atmosphere. We extract from this analysis a hitherto-unknown scaling law that predicts the dynamic contact angle between the three phases as a function of the properties of the coating and the velocity of the contact line. Finally, we show that droplets moving on vertical substrates coated with gel layers having linear thickness gradients drift toward regions of higher energy dissipation. Thus, thickness control opens the opportunity to design a priori the path followed by large droplets moving on gel-coated substrates. Our study shows that thickness is another parameter, besides surface energy and substrate mechanics, to tune the dynamics of liquid spreading and wetting on a compliant coating, with potential applications in dew collection and free-surface flow control.

摘要

附着在刚性基底上的凝胶层被用于细胞培养,以控制分化和迁移,并降低固体的摩擦和润湿性。它们的厚度通常被认为是一个可以忽略的参数,但却会影响细胞的机械感知或固定液滴的形状。在这里,我们展示了通过调整涂层厚度,可以控制流动物质在凝胶层上扩展时的能量耗散。我们结合实验和理论,提供了凝胶、液体和周围大气之间接触线的静态和动态的分析描述。我们从这个分析中提取出一个以前未知的标度律,该定律预测了三个相之间的动态接触角是如何作为涂层的特性和接触线速度的函数。最后,我们表明,在具有线性厚度梯度的凝胶层上移动的液滴会向能量耗散较高的区域漂移。因此,厚度控制为预先设计在涂有凝胶的基底上移动的大液滴的路径提供了机会。我们的研究表明,厚度是另一个参数,除了表面能和基底力学,可用于调节液体在柔顺涂层上扩展和润湿的动力学,这在露水收集和自由表面流控制方面具有潜在的应用。

相似文献

1
Geometrical control of dissipation during the spreading of liquids on soft solids.
Proc Natl Acad Sci U S A. 2018 Feb 20;115(8):1748-1753. doi: 10.1073/pnas.1712562115. Epub 2018 Feb 5.
2
Surfactant solutions and porous substrates: spreading and imbibition.
Adv Colloid Interface Sci. 2004 Nov 29;111(1-2):3-27. doi: 10.1016/j.cis.2004.07.007.
3
Modeling the Maximum Spreading of Liquid Droplets Impacting Wetting and Nonwetting Surfaces.
Langmuir. 2016 Feb 9;32(5):1299-308. doi: 10.1021/acs.langmuir.5b04557. Epub 2016 Jan 25.
4
Spreading on viscoelastic solids: are contact angles selected by Neumann's law?
Soft Matter. 2020 Feb 7;16(5):1306-1322. doi: 10.1039/c9sm01453e. Epub 2020 Jan 14.
5
Spreading of liquid drops over porous substrates.
Adv Colloid Interface Sci. 2003 Jul 1;104:123-58. doi: 10.1016/s0001-8686(03)00039-3.
6
Morphology and stability of droplets sliding on soft viscoelastic substrates.
Soft Matter. 2024 Jan 24;20(4):762-772. doi: 10.1039/d3sm01197f.
7
Gradient-dynamics model for liquid drops on elastic substrates.
Soft Matter. 2021 Nov 24;17(45):10359-10375. doi: 10.1039/d1sm01032h.
8
Dynamic wetting and spreading and the role of topography.
J Phys Condens Matter. 2009 Nov 18;21(46):464122. doi: 10.1088/0953-8984/21/46/464122. Epub 2009 Oct 29.
9
A thin-film model for droplet spreading on soft solid substrates.
Soft Matter. 2020 Sep 16;16(35):8284-8298. doi: 10.1039/d0sm00643b.
10
Unsteady wetting of soft solids.
J Colloid Interface Sci. 2024 Jun 15;664:478-486. doi: 10.1016/j.jcis.2024.02.217. Epub 2024 Mar 6.

引用本文的文献

1
Dynamics of Droplets Moving on Lubricated Polymer Brushes.
Langmuir. 2024 Jun 18;40(24):12368-12380. doi: 10.1021/acs.langmuir.4c00400. Epub 2024 Jun 4.
2
Soft wetting with (a)symmetric Shuttleworth effect.
Proc Math Phys Eng Sci. 2022 Aug;478(2264):20220132. doi: 10.1098/rspa.2022.0132. Epub 2022 Aug 3.
3
Direct force measurement of microscopic droplets pulled along soft surfaces.
Nat Commun. 2022 Jul 30;13(1):4436. doi: 10.1038/s41467-022-31910-3.
4
The relationship between viscoelasticity and elasticity.
Proc Math Phys Eng Sci. 2020 Nov;476(2243):20200419. doi: 10.1098/rspa.2020.0419. Epub 2020 Nov 18.
5
Surface textures suppress viscoelastic braking on soft substrates.
Proc Natl Acad Sci U S A. 2020 Dec 22;117(51):32285-32292. doi: 10.1073/pnas.2008683117. Epub 2020 Dec 4.
6
Capillary transfer of soft films.
Proc Natl Acad Sci U S A. 2020 Mar 10;117(10):5210-5216. doi: 10.1073/pnas.2000340117. Epub 2020 Feb 24.
7
Wetting transitions in droplet drying on soft materials.
Nat Commun. 2019 Oct 21;10(1):4776. doi: 10.1038/s41467-019-12093-w.
8
Capillarity-driven migration of small objects: A critical review.
Eur Phys J E Soft Matter. 2019 Jan 8;42(1):1. doi: 10.1140/epje/i2019-11759-1.
9
Soft wetting: Models based on energy dissipation or on force balance are equivalent.
Proc Natl Acad Sci U S A. 2018 Jul 31;115(31):E7233. doi: 10.1073/pnas.1808870115. Epub 2018 Jul 23.
10
Reply to Karpitschka et al.: The Neumann force balance does not hold in dynamical elastowetting.
Proc Natl Acad Sci U S A. 2018 Jul 31;115(31):E7234-E7235. doi: 10.1073/pnas.1809463115. Epub 2018 Jul 23.

本文引用的文献

1
Friction and lubrication of hydrogels-its richness and complexity.
Soft Matter. 2006 Jun 20;2(7):544-552. doi: 10.1039/b603209p.
2
Droplets move over viscoelastic substrates by surfing a ridge.
Nat Commun. 2015 Aug 4;6:7891. doi: 10.1038/ncomms8891.
3
Elastocapillary deformations on partially-wetting substrates: rival contact-line models.
Soft Matter. 2014 Oct 7;10(37):7361-9. doi: 10.1039/c4sm00891j.
4
Surface tension and contact with soft elastic solids.
Nat Commun. 2013;4:2728. doi: 10.1038/ncomms3728.
5
Patterning droplets with durotaxis.
Proc Natl Acad Sci U S A. 2013 Jul 30;110(31):12541-4. doi: 10.1073/pnas.1307122110. Epub 2013 Jun 24.
6
Universal deformation of soft substrates near a contact line and the direct measurement of solid surface stresses.
Phys Rev Lett. 2013 Feb 8;110(6):066103. doi: 10.1103/PhysRevLett.110.066103. Epub 2013 Feb 7.
7
Straight contact lines on a soft, incompressible solid.
Eur Phys J E Soft Matter. 2012 Dec;35(12):9811. doi: 10.1140/epje/i2012-12134-6. Epub 2012 Dec 21.
8
Capillary pressure and contact line force on a soft solid.
Phys Rev Lett. 2012 Mar 2;108(9):094301. doi: 10.1103/PhysRevLett.108.094301. Epub 2012 Feb 28.
9
Deformation of an elastic substrate by a three-phase contact line.
Phys Rev Lett. 2011 May 6;106(18):186103. doi: 10.1103/PhysRevLett.106.186103.
10
The softer the better: fast condensation on soft surfaces.
Langmuir. 2010 Feb 2;26(3):1544-7. doi: 10.1021/la903996j.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验