Karpitschka S, Das S, van Gorcum M, Perrin H, Andreotti B, Snoeijer J H
Physics of Fluids Group, Faculty of Science and Technology, Mesa+ Institute, University of Twente, 7500 AE Enschede, The Netherlands.
Department of Mechanical Engineering, University of Maryland, College Park, Maryland 20742, USA.
Nat Commun. 2015 Aug 4;6:7891. doi: 10.1038/ncomms8891.
Liquid drops on soft solids generate strong deformations below the contact line, resulting from a balance of capillary and elastic forces. The movement of these drops may cause strong, potentially singular dissipation in the soft solid. Here we show that a drop on a soft substrate moves by surfing a ridge: the initially flat solid surface is deformed into a sharp ridge whose orientation angle depends on the contact line velocity. We measure this angle for water on a silicone gel and develop a theory based on the substrate rheology. We quantitatively recover the dynamic contact angle and provide a mechanism for stick-slip motion when a drop is forced strongly: the contact line depins and slides down the wetting ridge, forming a new one after a transient. We anticipate that our theory will have implications in problems such as self-organization of cell tissues or the design of capillarity-based microrheometers.
软固体上的液滴在接触线下方会产生强烈变形,这是由毛细力和弹力的平衡导致的。这些液滴的移动可能会在软固体中引起强烈的、潜在的奇异耗散。在这里,我们表明软基底上的液滴通过沿着一个脊状物“冲浪”来移动:最初平坦的固体表面会变形为一个尖锐的脊状物,其取向角取决于接触线速度。我们测量了硅胶上水滴的这个角度,并基于基底流变学建立了一个理论。我们定量地恢复了动态接触角,并为液滴受到强烈推动时的粘滑运动提供了一种机制:接触线脱钉并沿着润湿脊下滑,经过一个瞬态后形成一个新的脊状物。我们预计我们的理论将对诸如细胞组织的自组织或基于毛细作用的微流变仪设计等问题产生影响。