Plant Biotechnology Unit, ICAR-Indian Institute of Wheat and Barley Research, Karnal, 132001, India.
Present address: Department of Biotechnology, Panjab University Chandigarh, Chandigarh, 160014, India.
BMC Genomics. 2018 Feb 12;19(1):132. doi: 10.1186/s12864-018-4506-3.
The WRKY transcription factors are a class of DNA-binding proteins involved in diverse plant processes play critical roles in response to abiotic and biotic stresses. Genome-wide divergence analysis of WRKY gene family in Hordeum vulgare provided a framework for molecular evolution and functional roles. So far, the crystal structure of WRKY from barley has not been resolved; moreover, knowledge of the three-dimensional structure of WRKY domain is pre-requisites for exploring the protein-DNA recognition mechanisms. Homology modelling based approach was used to generate structures for WRKY DNA binding domain (DBD) and its variants using AtWRKY1 as a template. Finally, the stability and conformational changes of the generated model in unbound and bound form was examined through atomistic molecular dynamics (MD) simulations for 100 ns time period.
In this study, we investigated the comparative binding pattern of WRKY domain and its variants with W-box cis-regulatory element using molecular docking and dynamics (MD) simulations assays. The atomic insight into WRKY domain exhibited significant variation in the intermolecular hydrogen bonding pattern, leading to the structural anomalies in the variant type and differences in the DNA-binding specificities. Based on the MD analysis, residual contribution and interaction contour, wild-type WRKY (HvWRKY46) were found to interact with DNA through highly conserved heptapeptide in the pre- and post-MD simulated complexes, whereas heptapeptide interaction with DNA was missing in variants (I and II) in post-MD complexes. Consequently, through principal component analysis, wild-type WRKY was also found to be more stable by obscuring a reduced conformational space than the variant I (HvWRKY34). Lastly, high binding free energy for wild-type and variant II allowed us to conclude that wild-type WRKY-DNA complex was more stable relative to variants I.
The results of our study revealed complete dynamic and structural information about WRKY domain-DNA interactions. However, no structure base information reported to date for WRKY variants and their mechanism of interaction with DNA. Our findings highlighted the importance of selecting a sequence to generate newer transgenic plants that would be increasingly tolerance to stress conditions.
WRKY 转录因子是一类参与多种植物过程的 DNA 结合蛋白,在应对非生物和生物胁迫方面发挥着关键作用。大麦 WRKY 基因家族的全基因组分歧分析为分子进化和功能作用提供了框架。到目前为止,还没有解析出大麦 WRKY 的晶体结构;此外,了解 WRKY 结构域的三维结构是探索蛋白质-DNA 识别机制的前提。本研究使用同源建模方法,以 AtWRKY1 为模板,生成 WRKY DNA 结合域(DBD)及其变体的结构。最后,通过原子分子动力学(MD)模拟 100ns 的时间,研究了无键和结合形式下生成模型的稳定性和构象变化。
本研究利用分子对接和动力学(MD)模拟实验,研究了 WRKY 结构域及其变体与 W 框顺式调控元件的比较结合模式。WRKY 结构域的原子细节显示出分子间氢键模式的显著变化,导致变体类型的结构异常和 DNA 结合特异性的差异。基于 MD 分析,在预和后 MD 模拟复合物中,野生型 WRKY(HvWRKY46)通过高度保守的七肽与 DNA 相互作用,而变体(I 和 II)在 MD 模拟复合物中缺失了七肽与 DNA 的相互作用。因此,通过主成分分析,野生型 WRKY 也被发现比变体 I(HvWRKY34)更稳定,因为它掩盖了更小的构象空间。最后,野生型和变体 II 的高结合自由能使我们得出结论,野生型 WRKY-DNA 复合物比变体更稳定。
本研究结果揭示了 WRKY 结构域-DNA 相互作用的完整动态和结构信息。然而,目前还没有关于 WRKY 变体及其与 DNA 相互作用机制的结构基础信息。我们的研究结果强调了选择序列以生成对胁迫条件具有更高耐受性的新型转基因植物的重要性。