Holm D D, Putkaradze V
Department of Mathematics, Imperial College, London SW7 2AZ, UK.
Mathematical and Statistical Sciences, University of Alberta, Edmonton, Alberta, Canada T6G2G1.
Proc Math Phys Eng Sci. 2018 Jan;474(2209):20170479. doi: 10.1098/rspa.2017.0479. Epub 2018 Jan 10.
This paper formulates a variational approach for treating observational uncertainty and/or computational model errors as stochastic transport in dynamical systems governed by action principles under non-holonomic constraints. For this purpose, we derive, analyse and numerically study the example of an unbalanced spherical ball rolling under gravity along a stochastic path. Our approach uses the Hamilton-Pontryagin variational principle, constrained by a stochastic rolling condition, which we show is equivalent to the corresponding stochastic Lagrange-d'Alembert principle. In the example of the rolling ball, the stochasticity represents uncertainty in the observation and/or error in the computational simulation of the angular velocity of rolling. The influence of the stochasticity on the deterministically conserved quantities is investigated both analytically and numerically. Our approach applies to a wide variety of stochastic, non-holonomically constrained systems, because it preserves the mathematical properties inherited from the variational principle.
本文提出了一种变分方法,用于将观测不确定性和/或计算模型误差视为在非完整约束下由作用原理控制的动力系统中的随机输运。为此,我们推导、分析并数值研究了一个不平衡球形球在重力作用下沿随机路径滚动的例子。我们的方法使用了哈密顿 - 庞特里亚金变分原理,并受随机滚动条件的约束,我们证明该条件等同于相应的随机拉格朗日 - 达朗贝尔原理。在滚动球的例子中,随机性代表观测中的不确定性和/或滚动角速度计算模拟中的误差。通过解析和数值方法研究了随机性对确定性守恒量的影响。我们的方法适用于各种随机的、非完整约束系统,因为它保留了从变分原理继承而来的数学性质。