Suppr超能文献

量子机器学习:一种经典视角。

Quantum machine learning: a classical perspective.

作者信息

Ciliberto Carlo, Herbster Mark, Ialongo Alessandro Davide, Pontil Massimiliano, Rocchetto Andrea, Severini Simone, Wossnig Leonard

机构信息

Department of Computer Science, University College London, London, UK.

Department of Engineering, University of Cambridge, Cambridge, UK.

出版信息

Proc Math Phys Eng Sci. 2018 Jan;474(2209):20170551. doi: 10.1098/rspa.2017.0551. Epub 2018 Jan 17.

Abstract

Recently, increased computational power and data availability, as well as algorithmic advances, have led machine learning (ML) techniques to impressive results in regression, classification, data generation and reinforcement learning tasks. Despite these successes, the proximity to the physical limits of chip fabrication alongside the increasing size of datasets is motivating a growing number of researchers to explore the possibility of harnessing the power of quantum computation to speed up classical ML algorithms. Here we review the literature in quantum ML and discuss perspectives for a mixed readership of classical ML and quantum computation experts. Particular emphasis will be placed on clarifying the limitations of quantum algorithms, how they compare with their best classical counterparts and why quantum resources are expected to provide advantages for learning problems. Learning in the presence of noise and certain computationally hard problems in ML are identified as promising directions for the field. Practical questions, such as how to upload classical data into quantum form, will also be addressed.

摘要

最近,计算能力的提升、数据可用性的增加以及算法的进步,使得机器学习(ML)技术在回归、分类、数据生成和强化学习任务中取得了令人瞩目的成果。尽管取得了这些成功,但随着芯片制造接近物理极限以及数据集规模不断增大,越来越多的研究人员开始探索利用量子计算的能力来加速经典ML算法的可能性。在此,我们回顾量子机器学习领域的文献,并为经典机器学习和量子计算领域的混合读者群体探讨相关观点。我们将特别强调阐明量子算法的局限性、它们与最佳经典算法相比的情况,以及为何量子资源有望在学习问题上提供优势。在噪声环境下的学习以及机器学习中某些计算困难的问题被确定为该领域有前景的发展方向。诸如如何将经典数据上传为量子形式等实际问题也将得到探讨。

相似文献

1
Quantum machine learning: a classical perspective.量子机器学习:一种经典视角。
Proc Math Phys Eng Sci. 2018 Jan;474(2209):20170551. doi: 10.1098/rspa.2017.0551. Epub 2018 Jan 17.
2
3
On the Applicability of Quantum Machine Learning.论量子机器学习的适用性
Entropy (Basel). 2023 Jun 28;25(7):992. doi: 10.3390/e25070992.
5
Power of data in quantum machine learning.量子机器学习中数据的力量。
Nat Commun. 2021 May 11;12(1):2631. doi: 10.1038/s41467-021-22539-9.
6
Recent Advances for Quantum Neural Networks in Generative Learning.量子神经网络在生成学习中的最新进展
IEEE Trans Pattern Anal Mach Intell. 2023 Oct;45(10):12321-12340. doi: 10.1109/TPAMI.2023.3272029. Epub 2023 Sep 5.
7
Quantum machine learning.量子机器学习。
Nature. 2017 Sep 13;549(7671):195-202. doi: 10.1038/nature23474.
10
Supervised learning with quantum-enhanced feature spaces.基于量子增强特征空间的有监督学习。
Nature. 2019 Mar;567(7747):209-212. doi: 10.1038/s41586-019-0980-2. Epub 2019 Mar 13.

引用本文的文献

2
Parametric matrix models.参数矩阵模型
Nat Commun. 2025 Jul 1;16(1):5929. doi: 10.1038/s41467-025-61362-4.
7
Quantum discriminator for binary classification.用于二元分类的量子鉴别器。
Sci Rep. 2024 Jan 15;14(1):1328. doi: 10.1038/s41598-023-46469-2.
8
Quantum technology for development framework as a tool for science diplomacy.作为科学外交工具的量子技术促进发展框架。
Front Res Metr Anal. 2023 Dec 19;8:1279376. doi: 10.3389/frma.2023.1279376. eCollection 2023.
9
Synergic quantum generative machine learning.协同量子生成式机器学习
Sci Rep. 2023 Aug 9;13(1):12893. doi: 10.1038/s41598-023-40137-1.

本文引用的文献

1
Quantum machine learning.量子机器学习。
Nature. 2017 Sep 13;549(7671):195-202. doi: 10.1038/nature23474.
4
Quantum support vector machine for big data classification.用于大数据分类的量子支持向量机。
Phys Rev Lett. 2014 Sep 26;113(13):130503. doi: 10.1103/PhysRevLett.113.130503. Epub 2014 Sep 25.
5
Limits on fundamental limits to computation.计算基本极限的限制。
Nature. 2014 Aug 14;512(7513):147-54. doi: 10.1038/nature13570.
6
Preconditioned quantum linear system algorithm.预处理量子线性系统算法。
Phys Rev Lett. 2013 Jun 21;110(25):250504. doi: 10.1103/PhysRevLett.110.250504. Epub 2013 Jun 18.
7
Preparing projected entangled pair states on a quantum computer.在量子计算机上制备纠缠对态。
Phys Rev Lett. 2012 Mar 16;108(11):110502. doi: 10.1103/PhysRevLett.108.110502. Epub 2012 Mar 13.
8
Exponential complexity of the quantum adiabatic algorithm for certain satisfiability problems.
Phys Rev E Stat Nonlin Soft Matter Phys. 2011 Dec;84(6 Pt 1):061152. doi: 10.1103/PhysRevE.84.061152. Epub 2011 Dec 29.
9
Quantum Metropolis sampling.量子 metropolis 抽样。
Nature. 2011 Mar 3;471(7336):87-90. doi: 10.1038/nature09770.
10
Preparing thermal states of quantum systems by dimension reduction.通过降维来制备量子系统的热态。
Phys Rev Lett. 2010 Oct 22;105(17):170405. doi: 10.1103/PhysRevLett.105.170405.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验