Cook Patrick, Jammooa Danny, Hjorth-Jensen Morten, Lee Daniel D, Lee Dean
Facility for Rare Isotope Beams, Michigan State University, East Lansing, MI, USA.
Department of Physics and Astronomy, Michigan State University, East Lansing, MI, USA.
Nat Commun. 2025 Jul 1;16(1):5929. doi: 10.1038/s41467-025-61362-4.
We present a general class of machine learning algorithms called parametric matrix models. In contrast with most existing machine learning models that imitate the biology of neurons, parametric matrix models use matrix equations that emulate physical systems. Similar to how physics problems are usually solved, parametric matrix models learn the governing equations that lead to the desired outputs. Parametric matrix models can be efficiently trained from empirical data, and the equations may use algebraic, differential, or integral relations. While originally designed for scientific computing, we prove that parametric matrix models are universal function approximators that can be applied to general machine learning problems. After introducing the underlying theory, we apply parametric matrix models to a series of different challenges that show their performance for a wide range of problems. For all the challenges tested here, parametric matrix models produce accurate results within an efficient and interpretable computational framework that allows for input feature extrapolation.
我们提出了一类称为参数矩阵模型的通用机器学习算法。与大多数模仿神经元生物学的现有机器学习模型不同,参数矩阵模型使用模拟物理系统的矩阵方程。类似于通常解决物理问题的方式,参数矩阵模型学习导致期望输出的控制方程。参数矩阵模型可以从经验数据中进行有效训练,并且方程可以使用代数、微分或积分关系。虽然最初是为科学计算而设计的,但我们证明参数矩阵模型是通用函数逼近器,可应用于一般的机器学习问题。在介绍了基础理论之后,我们将参数矩阵模型应用于一系列不同的挑战,这些挑战展示了它们在广泛问题上的性能。对于此处测试的所有挑战,参数矩阵模型在一个允许输入特征外推的高效且可解释的计算框架内产生准确的结果。