Milano Elizabeth R, Payne Courtney E, Wolfrum Ed, Lovell John, Jenkins Jerry, Schmutz Jeremy, Juenger Thomas E
1Department of Integrative Biology, The University of Texas at Austin, Austin, TX 78712 USA.
2National Bioenergy Center, National Renewable Energy Laboratory, Golden, CO 80401 USA.
Biotechnol Biofuels. 2018 Feb 3;11:25. doi: 10.1186/s13068-018-1033-z. eCollection 2018.
Biofuels derived from lignocellulosic plant material are an important component of current renewable energy strategies. Improvement efforts in biofuel feedstock crops have been primarily focused on increasing biomass yield with less consideration for tissue quality or composition. Four primary components found in the plant cell wall contribute to the overall quality of plant tissue and conversion characteristics, cellulose and hemicellulose polysaccharides are the primary targets for fuel conversion, while lignin and ash provide structure and defense. We explore the genetic architecture of tissue characteristics using a quantitative trait loci (QTL) mapping approach in , a model lignocellulosic grass system. Diversity in the mapping population was generated by crossing xeric and mesic varietals, comparative to northern upland and southern lowland ecotypes in switchgrass. We use near-infrared spectroscopy with a primary analytical method to create a specific calibration model to quickly quantify cell wall components.
Ash, lignin, glucan, and xylan comprise 68% of total dry biomass in : comparable to other feedstocks. We identified 14 QTL and one epistatic interaction across these four cell wall traits and found almost half of the QTL to localize to a single linkage group.
serves as the genomic model for its close relative and emerging biofuel crop, switchgrass (). We used high throughput phenotyping to map genomic regions that impact natural variation in leaf tissue composition. Understanding the genetic architecture of tissue traits in a tractable model grass system will lead to a better understanding of cell wall structure as well as provide genomic resources for bioenergy crop breeding programs.
源自木质纤维素植物材料的生物燃料是当前可再生能源战略的重要组成部分。生物燃料原料作物的改良工作主要集中在提高生物量产量上,而较少考虑组织质量或组成。植物细胞壁中的四种主要成分对植物组织的整体质量和转化特性有贡献,纤维素和半纤维素多糖是燃料转化的主要目标,而木质素和灰分提供结构和防御功能。我们在一种模式木质纤维素禾本科植物系统中,使用数量性状基因座(QTL)定位方法探索组织特征的遗传结构。通过杂交旱生和中生品种产生定位群体的多样性,这类似于柳枝稷中的北方高地和南方低地生态型。我们使用近红外光谱作为主要分析方法来创建一个特定的校准模型,以快速量化细胞壁成分。
灰分、木质素、葡聚糖和木聚糖占[具体植物名称]总干生物量的68%:与其他原料相当。我们在这四个细胞壁性状中鉴定出14个QTL和一个上位性相互作用,并发现几乎一半的QTL定位于单个连锁群。
[具体植物名称]作为其近缘且新兴的生物燃料作物柳枝稷的基因组模型。我们使用高通量表型分析来绘制影响叶片组织组成自然变异的基因组区域。了解一个易于处理的模式禾本科植物系统中组织性状的遗传结构,将有助于更好地理解细胞壁结构,并为生物能源作物育种计划提供基因组资源。