Suppr超能文献

最大似然期望最大化算法与窗口滤波反投影算法:一个案例研究

Maximum-Likelihood Expectation-Maximization Algorithm Versus Windowed Filtered Backprojection Algorithm: A Case Study.

作者信息

Zeng Gengsheng L

机构信息

Department of Engineering, Weber State University, Ogden, Utah; and Department of Radiology and Imaging Sciences, University of Utah, Salt Lake City, Utah

出版信息

J Nucl Med Technol. 2018 Jun;46(2):129-132. doi: 10.2967/jnmt.117.196311. Epub 2018 Feb 2.

Abstract

Filtered backprojection (FBP) algorithms reduce image noise by smoothing the image. Iterative algorithms reduce image noise by noise weighting and regularization. It is believed that iterative algorithms are able to reduce noise without sacrificing image resolution, and thus iterative algorithms, especially maximum-likelihood expectation maximization (MLEM), are used in nuclear medicine to replace FBP algorithms. This short paper uses counter examples to show that this belief is not true. We compare image noise variance for FBP and MLEM reconstructions having the same spatial resolution. The truth is that although MLEM suppresses image noise, it does so by sacrificing image resolution as well; the performance of windowed FBP may be better than that of MLEM in our case study. The myth of the superiority of iterative algorithms is caused by comparing them with conventional FBP instead of with windowed FBP. However, we do not intend to generalize the comparison results to imply which algorithm is more favorable.

摘要

滤波反投影(FBP)算法通过平滑图像来降低图像噪声。迭代算法通过噪声加权和正则化来降低图像噪声。人们认为迭代算法能够在不牺牲图像分辨率的情况下降低噪声,因此迭代算法,尤其是最大似然期望最大化(MLEM)算法,在核医学中被用于取代FBP算法。本文通过反例表明这种观点是不正确的。我们比较了具有相同空间分辨率的FBP和MLEM重建的图像噪声方差。事实是,虽然MLEM抑制了图像噪声,但它也是通过牺牲图像分辨率来做到这一点的;在我们的案例研究中,加窗FBP的性能可能优于MLEM。迭代算法优越性的神话是由于将它们与传统FBP而非加窗FBP进行比较造成的。然而,我们并不打算将比较结果推广以暗示哪种算法更有利。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验