Suppr超能文献

滤波反投影算法的性能优于迭代最大似然期望最大化算法。

Filtered Backprojection Algorithm Can Outperform Iterative Maximum Likelihood Expectation-Maximization Algorithm.

作者信息

Zeng Gengsheng L

机构信息

Utah Center for Advanced Imaging Research (UCAIR), Department of Radiology, University of Utah, Salt Lake City, UT 84108.

出版信息

Int J Imaging Syst Technol. 2012 Jun;22(2):114-120. doi: 10.1002/ima.22011. Epub 2012 May 12.

Abstract

The iterative maximum-likelihood expectation-maximization (ML-EM) algorithm is an excellent algorithm for image reconstruction and usually provides better images than the filtered backprojection (FBP) algorithm. However, a windowed FBP algorithm can outperform the ML-EM in certain occasions, when the least-squared difference from the true image, that is, the least-squared error (LSE), is used as the comparison criterion. Computer simulations were carried out for the two algorithms. For a given data set the best reconstruction (compared to the true image) from each algorithm was first obtained, and the two reconstructions are compared. The stopping iteration number of the ML-EM algorithm and the parameters of the windowed FBP algorithm were determined, so that they produced an image that was closest to the true image. However, to use the LSE criterion to compare algorithms, one must know the true image. How to select the optimal parameters when the true image is unknown is a practical open problem. For noisy Poisson projections, computer simulation results indicate that the ML-EM images are better than the regular FBP images, and the windowed FBP algorithm images are better than the ML-EM images. For the noiseless projections, the FBP algorithms outperform the ML-EM algorithm. The computer simulations reveal that the windowed FBP algorithm can provide a reconstruction that is closer to the true image than the ML-EM algorithm.

摘要

迭代最大似然期望最大化(ML-EM)算法是一种出色的图像重建算法,通常能提供比滤波反投影(FBP)算法更好的图像。然而,当使用与真实图像的最小二乘差(即最小二乘误差,LSE)作为比较标准时,加窗FBP算法在某些情况下可能优于ML-EM算法。对这两种算法进行了计算机模拟。对于给定的数据集,首先从每种算法中获得与真实图像相比的最佳重建结果,然后比较这两种重建结果。确定了ML-EM算法的停止迭代次数和加窗FBP算法的参数,以使它们生成最接近真实图像的图像。然而,要使用LSE标准来比较算法,必须知道真实图像。当真实图像未知时如何选择最优参数是一个实际的开放性问题。对于有噪声的泊松投影,计算机模拟结果表明ML-EM算法生成的图像优于常规FBP算法生成的图像,而加窗FBP算法生成的图像优于ML-EM算法生成的图像。对于无噪声投影,FBP算法优于ML-EM算法。计算机模拟表明,加窗FBP算法能提供比ML-EM算法更接近真实图像的重建结果。

相似文献

1
Filtered Backprojection Algorithm Can Outperform Iterative Maximum Likelihood Expectation-Maximization Algorithm.
Int J Imaging Syst Technol. 2012 Jun;22(2):114-120. doi: 10.1002/ima.22011. Epub 2012 May 12.
2
Maximum-Likelihood Expectation-Maximization Algorithm Versus Windowed Filtered Backprojection Algorithm: A Case Study.
J Nucl Med Technol. 2018 Jun;46(2):129-132. doi: 10.2967/jnmt.117.196311. Epub 2018 Feb 2.
3
Comparison of a noise-weighted filtered backprojection algorithm with the Standard MLEM algorithm for poisson noise.
J Nucl Med Technol. 2013 Dec;41(4):283-8. doi: 10.2967/jnmt.113.127399. Epub 2013 Oct 24.
5
Optimisation of the OS-EM algorithm and comparison with FBP for image reconstruction on a dual-head camera: a phantom and a clinical 18F-FDG study.
Eur J Nucl Med Mol Imaging. 2003 Nov;30(11):1510-9. doi: 10.1007/s00259-003-1246-6. Epub 2003 Sep 23.
6
Noise-Weighted FBP Algorithm for Uniformly Attenuated SPECT Projections.
IEEE Trans Nucl Sci. 2016 Jun;63(3):1435-1439. doi: 10.1109/TNS.2016.2564924. Epub 2016 Jun 23.
7
Fast EM-like methods for maximum "a posteriori" estimates in emission tomography.
IEEE Trans Med Imaging. 2001 Apr;20(4):280-8. doi: 10.1109/42.921477.
9

引用本文的文献

1
Noise-Weighted FBP Algorithm for Uniformly Attenuated SPECT Projections.
IEEE Trans Nucl Sci. 2016 Jun;63(3):1435-1439. doi: 10.1109/TNS.2016.2564924. Epub 2016 Jun 23.
2
Comparison of FBP and Iterative Algorithms with Non-Uniform Angular Sampling.
IEEE Trans Nucl Sci. 2015 Feb;62(1):120-130. doi: 10.1109/TNS.2014.2358945.
3
Model Based Filtered Backprojection Algorithm: A Tutorial.
Biomed Eng Lett. 2014 Mar;4(1):3-18. doi: 10.1007/s13534-014-0121-7.
4
Noise-weighted spatial domain FBP algorithm.
Med Phys. 2014 May;41(5):051906. doi: 10.1118/1.4870989.

本文引用的文献

1
A filtered backprojection MAP algorithm with nonuniform sampling and noise modeling.
Med Phys. 2012 Apr;39(4):2170-8. doi: 10.1118/1.3697736.
3
Maximum likelihood reconstruction for emission tomography.
IEEE Trans Med Imaging. 1982;1(2):113-22. doi: 10.1109/TMI.1982.4307558.
6
Optimisation of the OS-EM algorithm and comparison with FBP for image reconstruction on a dual-head camera: a phantom and a clinical 18F-FDG study.
Eur J Nucl Med Mol Imaging. 2003 Nov;30(11):1510-9. doi: 10.1007/s00259-003-1246-6. Epub 2003 Sep 23.
7
8
Performance evaluation of filtered backprojection reconstruction and iterative reconstruction methods for PET images.
Comput Biol Med. 1998 Jan;28(1):13-24; discussion 24-5. doi: 10.1016/s0010-4825(97)00031-0.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验