Suppr超能文献

协作式、联合式和协调式研究设计在流行病学研究中的应用:挑战与机遇。

Collaborative, pooled and harmonized study designs for epidemiologic research: challenges and opportunities.

机构信息

Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA.

Division of Ophthalmology.

出版信息

Int J Epidemiol. 2018 Apr 1;47(2):654-668. doi: 10.1093/ije/dyx283.

Abstract

Collaborative study designs (CSDs) that combine individual-level data from multiple independent contributing studies (ICSs) are becoming much more common due to their many advantages: increased statistical power through large sample sizes; increased ability to investigate effect heterogeneity due to diversity of participants; cost-efficiency through capitalizing on existing data; and ability to foster cooperative research and training of junior investigators. CSDs also present surmountable political, logistical and methodological challenges. Data harmonization may result in a reduced set of common data elements, but opportunities exist to leverage heterogeneous data across ICSs to investigate measurement error and residual confounding. Combining data from different study designs is an art, which motivates methods development. Diverse study samples, both across and within ICSs, prompt questions about the generalizability of results from CSDs. However, CSDs present unique opportunities to describe population health across person, place and time in a consistent fashion, and to explicitly generalize results to target populations of public health interest. Additional analytic challenges exist when analysing CSD data, because mechanisms by which systematic biases (e.g. information bias, confounding bias) arise may vary across ICSs, but multidisciplinary research teams are ready to tackle these challenges. CSDs are a powerful tool that, when properly harnessed, permits research that was not previously possible.

摘要

由于其诸多优势,将多个独立贡献研究(ICS)的个体水平数据合并的协作研究设计(CSD)变得越来越普遍:通过大样本量提高统计效力;通过参与者的多样性提高调查效果异质性的能力;通过利用现有数据提高成本效益;以及促进合作研究和初级研究人员培训的能力。CSD 也带来了可克服的政治、后勤和方法学挑战。数据协调可能会导致常见数据元素的数量减少,但有机会利用 ICS 中的异构数据来调查测量误差和残余混杂。合并来自不同研究设计的数据是一门艺术,这激发了方法的发展。不同的研究样本,无论是在 ICS 之间还是之内,都引发了关于 CSD 结果可推广性的问题。然而,CSD 提供了独特的机会,可以以一致的方式描述人群在人与地点和时间上的健康状况,并明确将结果推广到公共卫生关注的目标人群。当分析 CSD 数据时,还存在其他分析挑战,因为系统偏差(例如信息偏差、混杂偏差)产生的机制可能在 ICS 之间有所不同,但多学科研究团队已经准备好应对这些挑战。CSD 是一种强大的工具,如果正确利用,可以进行以前不可能进行的研究。

相似文献

5
Bias in clinical epidemiological study designs.临床流行病学研究设计中的偏倚。
Allergol Immunopathol (Madr). 2013 Jan-Feb;41(1):54-9. doi: 10.1016/j.aller.2012.04.005. Epub 2012 Oct 2.
6
Carryover Effects in Sibling Comparison Designs.同胞比较设计中的遗留效应。
Epidemiology. 2016 Nov;27(6):852-8. doi: 10.1097/EDE.0000000000000541.
7

引用本文的文献

本文引用的文献

2
Generalizing Study Results: A Potential Outcomes Perspective.推广研究结果:潜在结果视角
Epidemiology. 2017 Jul;28(4):553-561. doi: 10.1097/EDE.0000000000000664.
4
Causal inference and the data-fusion problem.因果推断与数据融合问题。
Proc Natl Acad Sci U S A. 2016 Jul 5;113(27):7345-52. doi: 10.1073/pnas.1510507113.
5
Data Sharing.数据共享。
N Engl J Med. 2016 Jan 21;374(3):276-7. doi: 10.1056/NEJMe1516564.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验