Suppr超能文献

考虑将真实世界数据作为单臂试验的对照队列进行汇总:评估异质性的模拟研究。

Considerations for pooling real-world data as a comparator cohort to a single arm trial: a simulation study on assessment of heterogeneity.

机构信息

Janssen Research & Development, Titusville, USA.

Flatiron Health, Inc, 233 Spring Street, New York, NY, 10013, USA.

出版信息

BMC Med Res Methodol. 2023 Aug 24;23(1):193. doi: 10.1186/s12874-023-02002-7.

Abstract

BACKGROUND

Novel precision medicine therapeutics target increasingly granular, genomically-defined populations. Rare sub-groups make it challenging to study within a clinical trial or single real-world data (RWD) source; therefore, pooling from disparate sources of RWD may be required for feasibility. Heterogeneity assessment for pooled data is particularly complex when contrasting a pooled real-world comparator cohort (rwCC) with a single-arm clinical trial (SAT), because the individual comparisons are not independent as all compare a rwCC to the same SAT. Our objective was to develop a methodological framework for pooling RWD focused on the rwCC use case, and simulate novel approaches of heterogeneity assessment, especially for small datasets.

METHODS

We present a framework with the following steps: pre-specification, assessment of dataset eligibility, and outcome analyses (including assessment of outcome heterogeneity). We then simulated heterogeneity assessments for a binary response outcome in a SAT compared to two rwCCs, using standard methods for meta-analysis, and an Adjusted Cochran's Q test, and directly comparing the individual participant data (IPD) from the rwCCs.

RESULTS

We found identical power to detect a true difference for the adjusted Cochran's Q test and the IPD method, with both approaches superior to a standard Cochran's Q test. When assessing the impact of heterogeneity in the null scenario of no difference between the SAT and rwCCs, a lack of statistical power led to Type 1 error inflation. Similarly, in the alternative scenario of a true difference between SAT and rwCCs, we found substantial Type 2 error, with underpowered heterogeneity testing leading to underestimation of the treatment effect.

CONCLUSIONS

We developed a methodological framework for pooling RWD sources in the context of designing a rwCC for a SAT. When testing for heterogeneity during this process, the adjusted Cochran's Q test matches the statistical power of IPD heterogeneity testing. Limitations of quantitative heterogeneity testing in protecting against Type 1 or Type 2 error indicate these tests are best used descriptively, and after careful selection of datasets based on clinical/data considerations. We hope these findings will facilitate the rigorous pooling of RWD to unlock insights to benefit oncology patients.

摘要

背景

新型精准医学治疗方法针对的是越来越细粒度的、基于基因组定义的人群。在临床试验或单一真实世界数据 (RWD) 来源中,罕见亚组的研究极具挑战性;因此,可能需要从不同的 RWD 来源中进行汇总以确保可行性。当将汇总的真实世界对照队列 (rwCC) 与单臂临床试验 (SAT) 进行对比时,汇总数据的异质性评估特别复杂,因为个体比较并不独立,因为所有比较都是将 rwCC 与同一个 SAT 进行比较。我们的目标是开发一种专注于 rwCC 用例的汇总 RWD 的方法框架,并模拟新的异质性评估方法,特别是对于小数据集。

方法

我们提出了一个框架,包括以下步骤:预先指定、数据集资格评估和结果分析(包括结果异质性评估)。然后,我们使用荟萃分析的标准方法和调整后的 Cochran's Q 检验,以及直接比较 rwCC 的个体参与者数据 (IPD),对 SAT 与两个 rwCC 相比的二分类反应结局进行了异质性评估模拟。

结果

我们发现,调整后的 Cochran's Q 检验和 IPD 方法检测真实差异的功效相同,这两种方法都优于标准 Cochran's Q 检验。当评估在 SAT 和 rwCC 之间没有差异的零假设情况下异质性的影响时,缺乏统计学功效导致了Ⅰ类错误膨胀。同样,在 SAT 和 rwCC 之间存在真实差异的替代假设下,我们发现存在大量的Ⅱ类错误,由于异质性检验功效不足,导致对治疗效果的低估。

结论

我们开发了一种在设计 SAT 用 rwCC 的背景下汇总 RWD 来源的方法框架。在这个过程中进行异质性测试时,调整后的 Cochran's Q 检验与 IPD 异质性测试的统计功效相匹配。定量异质性测试在防范Ⅰ类或Ⅱ类错误方面的局限性表明,这些测试最好是在基于临床/数据考虑对数据集进行仔细选择后,以描述性方式使用。我们希望这些发现将促进对 RWD 的严格汇总,以挖掘对肿瘤学患者有益的见解。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9113/10464044/6b3c2273f294/12874_2023_2002_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验