Centre for Nanotechnology & Advanced Biomaterials, SASTRA's Hub for Research & Innovation (SHRI), School of Chemical & Biotechnology, SASTRA University, Thanjavur, 613401, India.
Central Animal Facility, SASTRA University, Thanjavur, 613401, India.
Biomaterials. 2018 Apr;162:82-98. doi: 10.1016/j.biomaterials.2018.01.056. Epub 2018 Feb 3.
Fabrication of anisotropic osteochondral-mimetic scaffold with mineralized subchondral zone and gradient interface remains challenging. We have developed an injectable semi-interpenetrating network hydrogel construct with chondroitin sulfate nanoparticles (ChS-NPs) and nanohydroxyapatite (nHA) (∼30-90 nm) in chondral and subchondral hydrogel zones respectively. Mineralized subchondral hydrogel exhibited significantly higher osteoblast proliferation and alkaline phosphatase activity (p < 0.05). Osteochondral hydrogel exhibited interconnected porous structure and spatial variation with gradient interface of nHA and ChS-NPs. Microcomputed tomography (μCT) demonstrated nHA gradation while rheology showed predominant elastic modulus (∼930 Pa) at the interface. Co-culture of osteoblasts and chondrocytes in gradient hydrogels showed layer-specific retention of cells and cell-cell interaction at the interface. In vivo osteochondral regeneration by biphasic (nHA or ChS) and gradient (nHA + ChS) hydrogels was compared with control using rabbit osteochondral defect after 3 and 8 weeks. Complete closure of defect was observed in gradient (8 weeks) while defect remained in other groups. Histology demonstrated collagen and glycosaminoglycan deposition in neo-matrix and presence of hyaline cartilage-characteristic matrix, chondrocytes and osteoblasts. μCT showed mineralized neo-tissue formation, which was confined within the defect with higher bone mineral density in gradient (chondral: 0.42 ± 0.07 g/cc, osteal: 0.64 ± 0.08 g/cc) group. Further, biomechanical push-out studies showed significantly higher load for gradient group (378 ± 56 N) compared to others. Thus, the developed nano-engineered gradient hydrogel enhanced hyaline cartilage regeneration with subchondral bone formation and lateral host-tissue integration.
具有矿化软骨下区和梯度界面的各向异性骨软骨仿生支架的制造仍然具有挑战性。我们开发了一种可注射的半互穿网络水凝胶构建体,其中软骨素硫酸盐纳米颗粒(ChS-NPs)和纳米羟基磷灰石(nHA)(约 30-90nm)分别位于软骨和软骨下水凝胶区。矿化软骨下水凝胶表现出明显更高的成骨细胞增殖和碱性磷酸酶活性(p<0.05)。骨软骨水凝胶表现出相互连接的多孔结构和具有 nHA 和 ChS-NPs 梯度界面的空间变化。微计算机断层扫描(μCT)显示 nHA 梯度,而流变学显示界面处主要的弹性模量(约 930Pa)。成骨细胞和软骨细胞在梯度水凝胶中的共培养显示出细胞在界面处的层特异性保留和细胞-细胞相互作用。通过双相(nHA 或 ChS)和梯度(nHA+ChS)水凝胶与对照比较,在 3 和 8 周后使用兔骨软骨缺损进行体内骨软骨再生。在梯度组(8 周)中观察到缺陷完全闭合,而在其他组中缺陷仍然存在。组织学显示新基质中有胶原和糖胺聚糖沉积,以及透明软骨特征基质、软骨细胞和成骨细胞的存在。μCT 显示矿化新组织形成,其局限于缺陷内,梯度组(软骨:0.42±0.07g/cc,骨:0.64±0.08g/cc)的骨矿物质密度更高。此外,生物力学推挤研究表明,梯度组的负载明显更高(378±56N)。因此,开发的纳米工程梯度水凝胶增强了透明软骨再生,同时形成软骨下骨并与侧方宿主组织整合。