Kiselev Ilia, Sysoev Victor, Kaikov Igor, Koronczi Ilona, Adil Akai Tegin Ruslan, Smanalieva Jamila, Sommer Martin, Ilicali Coskan, Hauptmannl Michael
Breitmeier Messtechnik GmbH, Englerstr. 27, 76275 Ettlingen, Germany.
Laboratory of Sensors and Microsystems, Yuri Gagarin State Technical University of Saratov, 77 Polytechnicheskaya str., 410054 Saratov, Russia.
Sensors (Basel). 2018 Feb 11;18(2):550. doi: 10.3390/s18020550.
The paper deals with a functional instability of electronic nose (e-nose) units which significantly limits their real-life applications. Here we demonstrate how to approach this issue with example of an e-nose based on a metal oxide sensor array developed at the Karlsruhe Institute of Technology (Germany). We consider the instability of e-nose operation at different time scales ranging from minutes to many years. To test the e-nose we employ open-air and headspace sampling of analyte odors. The multivariate recognition algorithm to process the multisensor array signals is based on the linear discriminant analysis method. Accounting for the received results, we argue that the stability of device operation is mostly affected by accidental changes in the ambient air composition. To overcome instabilities, we introduce the add-training procedure which is found to successfully manage both the temporal changes of ambient and the drift of multisensor array properties, even long-term. The method can be easily implemented in practical applications of e-noses and improve prospects for device marketing.
本文探讨了电子鼻(e-nose)装置的功能不稳定性,这严重限制了它们在实际生活中的应用。在此,我们以德国卡尔斯鲁厄理工学院研发的基于金属氧化物传感器阵列的电子鼻为例,展示如何解决这一问题。我们考虑了电子鼻在从几分钟到多年的不同时间尺度下运行的不稳定性。为了测试电子鼻,我们采用对分析物气味进行露天和顶空采样的方法。处理多传感器阵列信号的多元识别算法基于线性判别分析方法。根据所获得的结果,我们认为设备运行的稳定性主要受周围空气成分的偶然变化影响。为了克服不稳定性,我们引入了附加训练程序,发现该程序能够成功应对周围环境的时间变化以及多传感器阵列特性的漂移,甚至是长期的漂移。该方法可轻松应用于电子鼻的实际应用中,并改善设备的市场前景。