Suppr超能文献

热改性及二氧化钛纳米管形态对其在生物传感器应用中电化学性能的影响

Influence of Thermal Modification and Morphology of TiO₂ Nanotubes on Their Electrochemical Properties for Biosensors Applications.

作者信息

Arkusz Katarzyna, Paradowska Ewa, Nycz Marta, Krasicka-Cydzik Elżzbieta

机构信息

Department of Mechanical Engineering, University of Zielona Gora, ul.Licealna 9, 65-417 Zielona Gora, Poland.

出版信息

J Nanosci Nanotechnol. 2018 May 1;18(5):3713-3721. doi: 10.1166/jnn.2018.14685.

Abstract

The morphology of self-assembled TiO2 nanotubes layer plays a key role in electrical conductivity and biocompatibility properties in terms of cell proliferation, adhesion and mineralization. Many research studies have been reported in using a TiO2 nanotubes for different medical applications, there is a lack of unified correlation between TNT morphology and its electrochemical properties. The aim of this study was to examine the effects of diameter and annealing conditions on TiO2 nanotubes with identical height and their behaviour as biosensor platform. TiO2 nanotubes layer, 1000 nm thick with nanotubes of diameters in range: 25 ÷ 100 nm, was prepared by anodizing of the titanium foil in ethylene glycol solution. To change the crystal structure and improve the electrical conductivity of the semiconductive TiO2 nanotubes layer the thermal treatment by annealing in argon, nitrogen or air was used. Basing on the electrochemical tests, the XPS and scanning microscopy examinations, as well as the contact angle measurements and the amperometric detection of potassium ferricyanide, it was concluded that the 1000 nm thick TiO2 nanotubes layer with nanotubes of 50 nm diameter, annealed in argon, showed the best physicochemical properties, which helps investigate the adsorption immobilization mechanism. The possibility of using TNT as a biosensor platform was confirmed in hydrogen detection.

摘要

自组装二氧化钛纳米管层的形态在导电性以及细胞增殖、黏附和矿化方面的生物相容性特性中起着关键作用。许多研究报道了将二氧化钛纳米管用于不同的医学应用,但纳米管形貌与其电化学性质之间缺乏统一的关联。本研究的目的是研究直径和退火条件对具有相同高度的二氧化钛纳米管及其作为生物传感器平台性能的影响。通过在乙二醇溶液中对钛箔进行阳极氧化制备了厚度为1000 nm、纳米管直径范围为25÷100 nm的二氧化钛纳米管层。为了改变晶体结构并提高半导体二氧化钛纳米管层的导电性,采用了在氩气、氮气或空气中退火的热处理方法。基于电化学测试、X射线光电子能谱和扫描显微镜检查,以及接触角测量和铁氰化钾的安培检测,得出结论:直径为50 nm、在氩气中退火的1000 nm厚二氧化钛纳米管层表现出最佳的物理化学性质,这有助于研究吸附固定机制。在氢气检测中证实了使用纳米管作为生物传感器平台的可能性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验