Seo Sang-Hee, Uhm Soo-Hyuk, Kwon Jae-Sung, Choi Eun Ha, Kim Kwang-Mahn, Kim Kyoung-Nam
J Nanosci Nanotechnol. 2015 Mar;15(3):2501-7. doi: 10.1166/jnn.2015.10244.
Titanium oxide nanotube layer formed by plasma electrolytic oxidation (PEO) is known to be excellent in biomaterial applications. However, the annealing process which is commonly performed on the TiO2 nanotubes cause defects in the nanotubular structure. The purpose of this work was to apply a non-thermal atmospheric pressure plasma jet on diameter-controlled TiO2 nanotubes to mimic the effects of annealing while maintaining the tubular structure for use as biomaterial. Diameter-controlled nanotube samples fabricated by plasma electrolytic oxidation were dried and prepared under three different conditions: untreated, annealed at 450 °C for 1 h in air with a heating rate of 10 °C/min, and treated with an air-based non-thermal atmospheric pressure plasma jet for 5 minutes. The contact angle measurement was investigated to confirm the enhanced hydrophilicity of the TiO2 nanotubes. The chemical composition of the surface was studied using X-ray photoelectron spectroscopy, and the morphology of TiO2 nanotubes was examined by field emission scanning electron microscopy. For the viability of the cell, the attachment of the osteoblastic cell line MC3T3-E1 was determined using the water-soluble tetrazolium salt assay. We found that there are no morphological changes in the TiO2 nanotubular structure after the plasma treatment. Also, we investigated a change in the chemical composition and enhanced hydrophilicity which result in improved cell behavior. The results of this study indicated that the non-thermal atmospheric pressure plasma jet results in osteoblast functionality that is comparable to annealed samples while maintaining the tubular structure of the TiO2 nanotubes. Therefore, this study concluded that the use of a non-thermal atmospheric pressure plasma jet on nanotube surfaces may replace the annealing process following plasma electrolytic oxidation.
众所周知,通过等离子体电解氧化(PEO)形成的二氧化钛纳米管层在生物材料应用方面表现出色。然而,通常在TiO2纳米管上进行的退火过程会导致纳米管结构出现缺陷。这项工作的目的是将非热大气压等离子体射流应用于直径可控的TiO2纳米管,以模拟退火效果,同时保持管状结构以用作生物材料。通过等离子体电解氧化制备的直径可控纳米管样品在三种不同条件下进行干燥和制备:未处理、在空气中以10℃/min的加热速率于450℃退火1小时,以及用基于空气的非热大气压等离子体射流处理5分钟。通过接触角测量来确认TiO2纳米管亲水性的增强。使用X射线光电子能谱研究表面的化学成分,并通过场发射扫描电子显微镜检查TiO2纳米管的形态。对于细胞活力,使用水溶性四唑盐测定法确定成骨细胞系MC3T3-E1的附着情况。我们发现等离子体处理后TiO2纳米管结构没有形态变化。此外,我们研究了化学成分的变化和亲水性的增强,这导致细胞行为得到改善。这项研究的结果表明,非热大气压等离子体射流在保持TiO2纳米管管状结构的同时,能产生与退火样品相当的成骨细胞功能。因此,本研究得出结论,在纳米管表面使用非热大气压等离子体射流可以替代等离子体电解氧化后的退火过程。