Department of Sciences and Technological Innovation (DiSIT), University of Piemonte Orientale "A. Avogadro", V.le T. Michel 11, 15121 Alessandria, Italy; Laboratory of EnvironmentalChemistry and Toxicology, IRCCS - Istituto di Ricerche Farmacologiche Mario Negri, Via Giuseppe La Masa 19, 20156 Milan, Italy.
Department of Sciences and Technological Innovation (DiSIT), University of Piemonte Orientale "A. Avogadro", V.le T. Michel 11, 15121 Alessandria, Italy.
Sci Total Environ. 2018 Jul 1;628-629:319-328. doi: 10.1016/j.scitotenv.2018.01.293. Epub 2018 Feb 13.
In the present study, we investigated the health status of marine mussels (Mytilus galloprovincialis) caged and deployed at three different sites on the Sardinian coastline characterized by different levels of contamination: Fornelli (F, the reference site), Cala Real (CR), and Porto Torres (PT). A new low density oligonucleotide microarray was used to investigate global gene expression in the digestive gland of mussels. Target genes were selected to cover most of the biological processes involved in the stress response in bivalve mollusks (e.g. DNA metabolism, translation, immune response, cytoskeleton organization). A battery of classical biomarkers was also employed to complement the gene expression analyses. Chemical analysis revealed higher loads of heavy metals (Pb and Cu) and total polycyclic aromatic hydrocarbons (PAHs) at PT compared to the other sites. In mussels deployed at CR, functional genomics analysis of the microarray data rendered 78 differentially expressed genes (DEGs) involved in 11 biological processes. Animals exposed at PT had 105 DEGs that were characterized by the regulation of 14 biological processes, including mitochondrial activity, adhesion to substrate, DNA metabolism, translation, metal resistance, and cytoskeleton organization. Biomarker data (lysosomal membrane stability, lysosomal/cytoplasm volume ratio, lipofuscin accumulation, metallothionein content, micronucleus frequency, and cytoskeleton alteration) were in trend with transcriptomic output. Biomarker data were integrated using the Mussel Expert System (MES), allowing defining the area in which the presence of chemicals is toxic for mussels. Our study provides the opportunity to adopt a new approach of integrating transcriptomic (microarray) results with classical biomarkers to assess the impact of pollutants on marine mussels in biomonitoring programs.
在本研究中,我们调查了在撒丁岛沿海三个不同地点养殖和部署的贻贝(Mytilus galloprovincialis)的健康状况,这些地点的污染程度不同:福尔内利(F,参考地点)、卡拉雷亚尔(CR)和波托罗雷斯(PT)。使用新的低密度寡核苷酸微阵列研究贻贝消化腺的整体基因表达。选择靶基因以涵盖双壳类软体动物应激反应中涉及的大多数生物学过程(例如 DNA 代谢、翻译、免疫反应、细胞骨架组织)。还采用了一系列经典生物标志物来补充基因表达分析。化学分析显示,与其他地点相比,PT 处的重金属(Pb 和 Cu)和总多环芳烃(PAHs)负荷更高。在 CR 处部署的贻贝中,微阵列数据的功能基因组学分析产生了 78 个差异表达基因(DEGs),涉及 11 个生物学过程。暴露在 PT 的动物有 105 个 DEGs,其特征是调节 14 个生物学过程,包括线粒体活性、基底附着、DNA 代谢、翻译、金属抗性和细胞骨架组织。生物标志物数据(溶酶体膜稳定性、溶酶体/细胞质体积比、脂褐素积累、金属硫蛋白含量、微核频率和细胞骨架改变)与转录组输出一致。使用贻贝专家系统(MES)整合生物标志物数据,允许定义存在化学物质对贻贝有毒的区域。我们的研究提供了一种新方法,即将转录组(微阵列)结果与经典生物标志物相结合,以评估污染物对生物监测计划中海洋贻贝的影响。