Suppr超能文献

不同建模严重低血糖事件的方法:对有效性、成本和健康效用的影响。

Different Methods for Modelling Severe Hypoglycaemic Events: Implications for Effectiveness, Costs and Health Utilities.

机构信息

Bristol Medical School, University of Bristol, Canynge Hall, 39 Whatley Road, Bristol, BS8 2PS, UK.

National Guideline Centre, Royal College of Physicians, London, UK.

出版信息

Pharmacoeconomics. 2018 May;36(5):523-532. doi: 10.1007/s40273-018-0612-y.

Abstract

BACKGROUND

Clinical trials report severe hypoglycaemic events as the number of patients with at least one event out of the total randomised or number of events for a given total exposure. Different network meta-analysis models have been used to analyse these different data types.

OBJECTIVE

This aim of this article was to establish the impact of using the different models on effectiveness, costs and health utility estimates.

METHODS

We analysed a dataset used in a recent network meta-analysis of severe hypoglycaemic events conducted to inform National Institute for Health and Care Excellence recommendations regarding basal insulin choice for patients with type 1 diabetes mellitus. We fitted a model with a binomial likelihood reporting odds ratios (using a logit link) or hazard ratios (complementary log-log link), a model with a Poisson likelihood reporting hazard ratios and a shared-parameter model combining different types of data. We compared the results in terms of relative effects and resulting cost and disutility estimates.

RESULTS

Relative treatment effects are similar regardless of which model or scale is used. Differences were seen in the probability of having an event on the baseline treatment with the logit model giving a baseline probability of 0.07, the complementary log-log 0.17 and the Poisson 0.29. These translate into differences of up to £110 in the yearly cost of a hypoglycaemic event and 0.004 in disutility.

CONCLUSION

While choice of network meta-analysis model does not have a meaningful impact on relative effects for this outcome, care should be taken to ensure that the baseline probabilities used in an economic model are accurate to avoid misrepresenting costs and effects.

摘要

背景

临床试验报告严重低血糖事件,以总随机化患者中至少有一个事件的人数或特定总暴露的事件数来表示。已经使用了不同的网络荟萃分析模型来分析这些不同的数据类型。

目的

本文旨在确定使用不同模型对有效性、成本和健康效用估计的影响。

方法

我们分析了最近进行的一项严重低血糖事件网络荟萃分析中使用的数据集,该分析旨在为国家卫生与保健卓越研究所(National Institute for Health and Care Excellence)关于 1 型糖尿病患者基础胰岛素选择的建议提供信息。我们拟合了一个具有二项式似然性的模型,报告了比值比(使用对数链接)或风险比(互补对数-对数链接),一个具有泊松似然性的模型,报告了风险比,以及一个结合不同类型数据的共享参数模型。我们根据相对效果以及由此产生的成本和不效用估计来比较结果。

结果

无论使用哪种模型或比例,治疗效果的相对差异都相似。在使用对数模型时,基线治疗发生事件的概率为 0.07,互补对数-对数为 0.17,泊松为 0.29,这会导致事件每年成本的差异高达 110 英镑,不效用差异为 0.004。

结论

虽然网络荟萃分析模型的选择对该结果的相对效果没有有意义的影响,但应注意确保经济模型中使用的基线概率准确,以避免对成本和效果的错误描述。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/78bf/5906516/206f0e15f48d/40273_2018_612_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验