Suppr超能文献

将仅针对革兰氏阳性菌的化合物转化为广谱抗生素面临的挑战。

The challenge of converting Gram-positive-only compounds into broad-spectrum antibiotics.

机构信息

Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois.

出版信息

Ann N Y Acad Sci. 2019 Jan;1435(1):18-38. doi: 10.1111/nyas.13598. Epub 2018 Feb 15.

Abstract

Multidrug resistant Gram-negative bacterial infections are on the rise, and there is a lack of new classes of drugs to treat these pathogens. This drug shortage is largely due to the challenge of finding antibiotics that can permeate and persist inside Gram-negative species. Efforts to understand the molecular properties that enable certain compounds to accumulate in Gram-negative bacteria based on retrospective studies of known antibiotics have not been generally actionable in the development of new antibiotics. A recent assessment of the ability of >180 diverse small molecules to accumulate in Escherichia coli led to predictive guidelines for compound accumulation in E. coli. These "eNTRy rules" state that compounds are most likely to accumulate if they contain a nonsterically encumbered ionizable Nitrogen (primary amines are the best), have low Three-dimensionality (globularity ≤ 0.25), and are relatively Rigid (rotatable bonds ≤ 5). In this review, we look back through 50+ years of antibacterial research and 1000s of derivatives and assess this historical data set through the lens of these predictive guidelines. The results are consistent with the eNTRy rules, suggesting that the eNTRy rules may provide an actionable and general roadmap for the conversion of Gram-positive-only compounds into broad-spectrum antibiotics.

摘要

多重耐药革兰氏阴性菌感染呈上升趋势,而治疗这些病原体的新药类却缺乏。这种药物短缺在很大程度上是由于难以找到能够渗透并在革兰氏阴性菌中持续存在的抗生素。根据对已知抗生素的回顾性研究,试图了解使某些化合物能够在革兰氏阴性菌中积累的分子特性,在开发新抗生素方面并没有普遍可行的方法。最近对超过 180 种不同小分子在大肠杆菌中积累能力的评估,为大肠杆菌中化合物积累的预测指南提供了依据。这些“eNTRy 规则”指出,如果化合物含有不受空间位阻影响的可离子化氮(伯胺是最好的)、低三维性(球形度≤0.25)和相对刚性(旋转键≤5),则化合物最有可能积累。在这篇综述中,我们回顾了 50 多年的抗菌研究和数千种衍生物,并通过这些预测性指南来评估这个历史数据集。结果与 eNTRy 规则一致,这表明 eNTRy 规则可能为将仅针对革兰氏阳性菌的化合物转化为广谱抗生素提供一种可行且通用的路线图。

相似文献

引用本文的文献

9
Predicting Antimicrobial Class Specificity of Small Molecules Using Machine Learning.使用机器学习预测小分子的抗菌类别特异性
J Chem Inf Model. 2025 Mar 10;65(5):2416-2431. doi: 10.1021/acs.jcim.4c02347. Epub 2025 Feb 23.

本文引用的文献

6
Gonorrhea - an evolving disease of the new millennium.淋病——新千年不断演变的疾病。
Microb Cell. 2016 Sep 5;3(9):371-389. doi: 10.15698/mic2016.09.524.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验