Hermann Jan, Tkatchenko Alexandre
Fritz-Haber-Institut der Max-Planck-Gesellschaft , Faradayweg 4-6 , 14195 Berlin , Germany.
Physics and Materials Science Research Unit , University of Luxembourg , 162A Avenue de la Faïencerie , L-1511 Luxembourg.
J Chem Theory Comput. 2018 Mar 13;14(3):1361-1369. doi: 10.1021/acs.jctc.7b01172. Epub 2018 Feb 21.
Short-range correlations in motion of electrons in matter are captured well by semilocal exchange-correlation (XC) functionals in density functional theory (DFT), but long-range correlations are neglected in such models and must be treated by van der Waals (vdW) dispersion methods. Whereas the effective range of distances at which fluctuations are correlated is usually explicit in the vdW models, the complementary range of semilocal functionals can be observed only implicitly, requiring an introduction of empirical damping functions to couple the semilocal and nonlocal contributions to the XC energy. We present a comprehensive study of the interplay between these short-range and long-range energy contributions in eight semilocal functionals (LDA, PBE, TPSS, SCAN, PBE0, B3LYP, SCAN0, M06-L) and three vdW models (MBD, D3, VV10) on noncovalently bonded organic dimers (S66×8), molecular crystals (X23), and supramolecular complexes (S12L), as well as on a series of graphene-flake dimers, covering a range of intermolecular distances and binding energies (0.5-130 kcal/mol). The binding-energy profiles of many of the DFT+vdW combinations differ both quantitatively and qualitatively, and some of the qualitative differences are independent of the choice of the vdW model, establishing them as intrinsic properties of the respective semilocal functionals. We find that while the SCAN+vdW method yields a narrow range of binding-energy errors, the effective range of SCAN depends on system size, and we link this behavior to the specific dependence of SCAN on the electron localization function α around α = 1. Our study provides a systematic procedure to evaluate the consistency of semilocal XC functionals when paired with nonlocal vdW models and leads us to conclude that nonempirical generalized-gradient and hybrid functionals are currently among the most balanced semilocal choices for vdW systems.
密度泛函理论(DFT)中的半局域交换关联(XC)泛函能够很好地捕捉物质中电子运动的短程关联,但在这类模型中长程关联被忽略了,必须通过范德华(vdW)色散方法来处理。虽然在vdW模型中,波动相关的有效距离范围通常是明确的,但半局域泛函的互补范围只能隐含地观察到,这就需要引入经验阻尼函数来将半局域和非局域对XC能量的贡献耦合起来。我们对八种半局域泛函(LDA、PBE、TPSS、SCAN、PBE0、B3LYP、SCAN0、M06-L)和三种vdW模型(MBD、D3、VV10)在非共价键合有机二聚体(S66×8)、分子晶体(X23)和超分子复合物(S12L)以及一系列石墨烯薄片二聚体上的短程和长程能量贡献之间的相互作用进行了全面研究,涵盖了一系列分子间距离和结合能(0.5 - 130千卡/摩尔)。许多DFT + vdW组合的结合能曲线在定量和定性上都有所不同,并且一些定性差异与vdW模型的选择无关,这表明它们是各自半局域泛函的固有属性。我们发现,虽然SCAN + vdW方法产生的结合能误差范围较窄,但SCAN的有效范围取决于系统大小,并且我们将这种行为与SCAN在α = 1附近对电子定域函数α的特定依赖性联系起来。我们的研究提供了一个系统的程序来评估半局域XC泛函与非局域vdW模型配对时的一致性,并使我们得出结论,非经验广义梯度和杂化泛函目前是vdW系统中最平衡的半局域选择之一。