Instituto de Física del Sur (IFISUR), Departamento de Física, Universidad Nacional del Sur (UNS), CONICET, Av. L. N. Alem 1253, B8000CPB-Bahía Blanca, Argentina.
Institut Laue-Langevin, 71 Avenue des Martyrs, 3842 Grenoble, France.
Phys Rev E. 2018 Jan;97(1-1):012117. doi: 10.1103/PhysRevE.97.012117.
We use Monte Carlo simulations to study the finite temperature behavior of vortices in the XY model for tangent vector order on curved backgrounds. Contrary to naive expectations, we show that the underlying geometry does not affect the proliferation of vortices with temperature respect to what is observed on a flat surface. Long-range order in these systems is analyzed by using two-point correlation functions. As expected, in the case of slightly curved substrates these correlations behave similarly to the plane. However, for high curvatures, the presence of geometry-induced unbounded vortices at low temperatures produces the rapid decay of correlations and an apparent lack of long-range order. Our results shed light on the finite-temperature physics of soft-matter systems and anisotropic magnets deposited on curved substrates.
我们使用蒙特卡罗模拟来研究在弯曲背景下切向量序的 XY 模型中涡旋的有限温度行为。与天真的预期相反,我们表明,基础几何形状不会影响涡旋随温度的增殖,与在平面上观察到的情况相同。通过使用两点相关函数来分析这些系统中的长程有序。正如预期的那样,在稍微弯曲的衬底的情况下,这些相关性的行为与平面相似。然而,对于高曲率,低温下几何诱导的无界涡旋的存在导致相关性的迅速衰减,并表现出明显缺乏长程有序。我们的结果阐明了在弯曲衬底上沉积的软物质系统和各向异性磁体的有限温度物理学。