Rice Quinton, Tabibi Bagher, Seo Felix Jaetae
Advanced Center for Laser Science and Spectroscopy, Hampton University, Hampton, Virginia, 23668, USA.
J Nanosci Nanotechnol. 2018 Mar 1;18(3):2175-2176. doi: 10.1166/jnn.2018.14956.
The temperature-dependent bandgap of transition metal dichalcogenides (TMDCs, MX2; M = Mo or W; X = S, Se, or Te) is analyzed using the O'Donnell and Chen relation with parameters including the average acoustic phonon energy (〈ħω〉) and the electron-phonon coupling strength (s). Wider (narrower) tunability of the bandgap results from the larger (smaller) electron-phonon coupling strength for a constant acoustic phonon energy. A 1.5 eV bandgap change was observed for weak electron-phonon coupling (s = 2) as well as with the strong electron-phonon coupling (s = 30). However, the weak electron-phonon coupling leads to a linear decrease in the bandgap energy as a function of temperature above ~85 K while the strong coupling exhibits similar behavior after ~60 K. Narrower (wider) tunability of the bandgap results from the larger (smaller) acoustic phonon energy for a constant electron-phonon coupling strength. The slope of negative entropy of exciton formation is large (small) at lower (higher) temperature. The management of the electron-phonon interaction as well as the average acoustic phonon energy indicates the ability to control the bandgap.
利用奥多内尔和陈的关系式,对过渡金属二硫属化物(TMDCs,MX₂;M = Mo或W;X = S、Se或Te)的温度依赖带隙进行了分析,该关系式中的参数包括平均声子能量(〈ħω〉)和电子 - 声子耦合强度(s)。对于恒定的声子能量,带隙更宽(更窄)的可调性源于更大(更小)的电子 - 声子耦合强度。在弱电子 - 声子耦合(s = 2)以及强电子 - 声子耦合(s = 30)的情况下,均观察到了1.5 eV的带隙变化。然而,弱电子 - 声子耦合导致在高于约85 K时带隙能量随温度呈线性下降,而强耦合在约60 K之后表现出类似行为。对于恒定的电子 - 声子耦合强度,带隙更窄(更宽)的可调性源于更大(更小)的声子能量。在较低(较高)温度下,激子形成的负熵斜率较大(较小)。对电子 - 声子相互作用以及平均声子能量的调控表明了控制带隙的能力。