Suppr超能文献

过渡金属二硫属化物原子层的带隙可调性

Bandgap Tunability of Transition Metal Dichalcogenide Atomic Layers.

作者信息

Rice Quinton, Tabibi Bagher, Seo Felix Jaetae

机构信息

Advanced Center for Laser Science and Spectroscopy, Hampton University, Hampton, Virginia, 23668, USA.

出版信息

J Nanosci Nanotechnol. 2018 Mar 1;18(3):2175-2176. doi: 10.1166/jnn.2018.14956.

Abstract

The temperature-dependent bandgap of transition metal dichalcogenides (TMDCs, MX2; M = Mo or W; X = S, Se, or Te) is analyzed using the O'Donnell and Chen relation with parameters including the average acoustic phonon energy (〈ħω〉) and the electron-phonon coupling strength (s). Wider (narrower) tunability of the bandgap results from the larger (smaller) electron-phonon coupling strength for a constant acoustic phonon energy. A 1.5 eV bandgap change was observed for weak electron-phonon coupling (s = 2) as well as with the strong electron-phonon coupling (s = 30). However, the weak electron-phonon coupling leads to a linear decrease in the bandgap energy as a function of temperature above ~85 K while the strong coupling exhibits similar behavior after ~60 K. Narrower (wider) tunability of the bandgap results from the larger (smaller) acoustic phonon energy for a constant electron-phonon coupling strength. The slope of negative entropy of exciton formation is large (small) at lower (higher) temperature. The management of the electron-phonon interaction as well as the average acoustic phonon energy indicates the ability to control the bandgap.

摘要

利用奥多内尔和陈的关系式,对过渡金属二硫属化物(TMDCs,MX₂;M = Mo或W;X = S、Se或Te)的温度依赖带隙进行了分析,该关系式中的参数包括平均声子能量(〈ħω〉)和电子 - 声子耦合强度(s)。对于恒定的声子能量,带隙更宽(更窄)的可调性源于更大(更小)的电子 - 声子耦合强度。在弱电子 - 声子耦合(s = 2)以及强电子 - 声子耦合(s = 30)的情况下,均观察到了1.5 eV的带隙变化。然而,弱电子 - 声子耦合导致在高于约85 K时带隙能量随温度呈线性下降,而强耦合在约60 K之后表现出类似行为。对于恒定的电子 - 声子耦合强度,带隙更窄(更宽)的可调性源于更大(更小)的声子能量。在较低(较高)温度下,激子形成的负熵斜率较大(较小)。对电子 - 声子相互作用以及平均声子能量的调控表明了控制带隙的能力。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验