Suppr超能文献

自适应冻结轨道处理方法结合片段分子轨道方法和密度泛函紧束缚方法。

Adaptive frozen orbital treatment for the fragment molecular orbital method combined with density-functional tight-binding.

机构信息

Fukui Institute for Fundamental Chemistry, Kyoto University, 34-4 Takano Nishihiraki-cho, Sakyo-ku, Kyoto 606-8103, Japan.

Research Center for Computational Design of Advanced Functional Materials (CD-FMat), National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Umezono, Tsukuba, Ibaraki 305-8568, Japan.

出版信息

J Chem Phys. 2018 Feb 14;148(6):064115. doi: 10.1063/1.5012935.

Abstract

The exactly analytic gradient is derived and implemented for the fragment molecular orbital (FMO) method combined with density-functional tight-binding (DFTB) using adaptive frozen orbitals. The response contributions which arise from freezing detached molecular orbitals on the border between fragments are computed by solving Z-vector equations. The accuracy of the energy, its gradient, and optimized structures is verified on a set of representative inorganic materials and polypeptides. FMO-DFTB is applied to optimize the structure of a silicon nano-wire, and the results are compared to those of density functional theory and experiment. FMO accelerates the DFTB calculation of a boron nitride nano-ring with 7872 atoms by a factor of 406. Molecular dynamics simulations using FMO-DFTB applied to a 10.7 μm chain of boron nitride nano-rings, consisting of about 1.2 × 10 atoms, reveal the rippling and twisting of nano-rings at room temperature.

摘要

针对采用自适应冻结轨道的片段分子轨道(FMO)方法与密度泛函赝势(DFTB)相结合的情况,推导出并实现了精确的解析梯度。通过求解 Z 向量方程,计算了在片段边界上冻结离域分子轨道所产生的响应贡献。在一组具有代表性的无机材料和多肽上验证了能量、梯度和优化结构的准确性。将 FMO-DFTB 应用于优化硅纳米线的结构,并将结果与密度泛函理论和实验进行比较。FMO 将含有 7872 个原子的氮化硼纳米环的 DFTB 计算加速了 406 倍。使用 FMO-DFTB 对由约 1.2×10 个原子组成的 10.7 μm 长的氮化硼纳米环链进行分子动力学模拟,揭示了纳米环在室温下的起伏和扭曲。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验