Suppr超能文献

利用碎分子轨道和密度泛函紧束缚方法实现秒级精确评分。

Accurate Scoring in Seconds with the Fragment Molecular Orbital and Density-Functional Tight-Binding Methods.

机构信息

Evotec (UK) Ltd., Abingdon, Oxfordshire, UK.

Research Center for Computational Design of Advanced Functional Materials (CD-FMat), National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki, Japan.

出版信息

Methods Mol Biol. 2020;2114:143-148. doi: 10.1007/978-1-0716-0282-9_9.

Abstract

The accurate evaluation of receptor-ligand interactions is an essential part of rational drug design. While quantum mechanical (QM) methods have been a promising means by which to achieve this, traditional QM is not applicable for large biological systems due to its high computational cost. Here, the fragment molecular orbital (FMO) method has been combined with the density-functional tight-binding (DFTB) method to compute energy calculations of biological systems in seconds. FMO-DFTB outperformed GBVI/WSA in identifying a set of 10 binders versus a background of 500 decoys applied to human k-opioid receptor. The significant increase in the speed and the high accuracy achieved with FMO-DFTB calculations allows FMO to be applied in areas of drug discovery that were not previously accessible to traditional QM methodologies. For the first time, it is now possible to perform FMO calculations in a high-throughput manner.

摘要

准确评估受体-配体相互作用是合理药物设计的重要组成部分。虽然量子力学(QM)方法是实现这一目标的一种很有前途的手段,但由于其计算成本高,传统的 QM 方法并不适用于大型生物系统。在这里,片段分子轨道(FMO)方法与密度泛函紧密结合(DFTB)方法相结合,可在几秒钟内计算生物系统的能量。FMO-DFTB 在识别一组 10 种与 500 种背景诱饵相比的结合物方面优于 GBVI/WSA,这些结合物应用于人κ-阿片受体。FMO-DFTB 计算速度的显著提高和高精度的实现,使得 FMO 能够应用于传统 QM 方法以前无法企及的药物发现领域。这是第一次可以以高通量的方式进行 FMO 计算。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验