XDL-ESI:基于可解释深度学习框架的电生理源成像,在同时 EEG 和 iEEG 上进行验证。
XDL-ESI: Electrophysiological Sources Imaging via explainable deep learning framework with validation on simultaneous EEG and iEEG.
机构信息
Department of Systems and Enterprises, Stevens Institute of Technology, Hoboken, NJ, 07030, United States.
H. Milton Stewart School of Industrial and Systems Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, United States.
出版信息
Neuroimage. 2024 Oct 1;299:120802. doi: 10.1016/j.neuroimage.2024.120802. Epub 2024 Aug 22.
Electroencephalography (EEG) or Magnetoencephalography (MEG) source imaging aims to estimate the underlying activated brain sources to explain the observed EEG/MEG recordings. Solving the inverse problem of EEG/MEG Source Imaging (ESI) is challenging due to its ill-posed nature. To achieve a unique solution, it is essential to apply sophisticated regularization constraints to restrict the solution space. Traditionally, the design of regularization terms is based on assumptions about the spatiotemporal structure of the underlying source dynamics. In this paper, we propose a novel paradigm for ESI via an Explainable Deep Learning framework, termed as XDL-ESI, which connects the iterative optimization algorithm with deep learning architecture by unfolding the iterative updates with neural network modules. The proposed framework has the advantages of (1) establishing a data-driven approach to model the source solution structure instead of using hand-crafted regularization terms; (2) improving the robustness of source solutions by introducing a topological loss that leverages the geometric spatial information applying varying penalties on distinct localization errors; (3) improving the reconstruction efficiency and interpretability as it inherits the advantages from both the iterative optimization algorithms (interpretability) and deep learning approaches (function approximation). The proposed XDL-ESI framework provides an efficient, accurate, and interpretable paradigm to solve the ESI inverse problem with satisfactory performance in both simulated data and real clinical data. Specially, this approach is further validated using simultaneous EEG and intracranial EEG (iEEG).
脑电图(EEG)或脑磁图(MEG)源成像旨在估计潜在的激活大脑源,以解释观察到的 EEG/MEG 记录。由于其不适定性,解决 EEG/MEG 源成像(ESI)的逆问题具有挑战性。为了实现唯一的解决方案,必须应用复杂的正则化约束来限制解空间。传统上,正则化项的设计基于对潜在源动力学的时空结构的假设。在本文中,我们通过可解释深度学习框架提出了一种新的 ESI 范式,称为 XDL-ESI,它通过用神经网络模块展开迭代更新,将迭代优化算法与深度学习架构连接起来。所提出的框架具有以下优点:(1) 建立了一种数据驱动的方法来模拟源解结构,而不是使用手工制作的正则化项;(2) 通过引入拓扑损失,利用几何空间信息对不同的定位误差施加不同的惩罚,提高了源解的鲁棒性;(3) 提高了重建效率和可解释性,因为它继承了迭代优化算法(可解释性)和深度学习方法(函数逼近)的优点。所提出的 XDL-ESI 框架为解决 ESI 逆问题提供了一种高效、准确和可解释的范例,在模拟数据和真实临床数据中都取得了令人满意的性能。特别地,该方法还使用同时进行的 EEG 和颅内 EEG(iEEG)进行了验证。