Suppr超能文献

用于治疗重度抑郁症的三重再摄取抑制剂阿米法丁结合机制的计算鉴定

Computational identification of the binding mechanism of a triple reuptake inhibitor amitifadine for the treatment of major depressive disorder.

作者信息

Xue Weiwei, Wang Panpan, Tu Gao, Yang Fengyuan, Zheng Guoxun, Li Xiaofeng, Li Xiaoxu, Chen Yuzong, Yao Xiaojun, Zhu Feng

机构信息

Innovative Drug Research and Bioinformatics Group, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China.

出版信息

Phys Chem Chem Phys. 2018 Feb 28;20(9):6606-6616. doi: 10.1039/c7cp07869b.

Abstract

Amitifadine, the only drug ever clinically tested in Phase 3 for treating depression, is a triple reuptake inhibitor (TRI) that simultaneously interacts with human monoamine transporters (MATs) including hSERT, hNET and hDAT. This novel multi-target strategy improves drug efficacy and reduces the toxic side effects of drugs. However, the binding modes accounting for amitifadine's polypharmacological mode of action are still elusive, and extensive exploration of the amitifadine-target interactions between amitifadine and MATs is urgently needed. In this study, a total of 0.63 μs molecular dynamics (MD) simulations with an explicit solvent as well as endpoint binding free energy (BFE) calculation were carried out. MD simulation results identified a shared binding mode involving eleven key residues at the S1 site of MATs for the binding of amitifadine, and the results of the BFE calculations were in good agreement with experimental reports. Moreover, by analyzing the per-residue energy contribution variation at the S1 site of three MATs and additional cross-mutagenesis simulations, the variation in the inhibition ratio of amitifadine between hSERT and two other MATs was discovered to mainly come from non-conserved residues (Y95, I172 and T439 in hNET and Y95, I172, A169 and T439 in hDAT). As the rational inhibition ratio of multi-target drugs among various therapeutic targets was found to be the key to their safety and tolerance, the findings of this study may further facilitate the rational design of more potent but less toxic multi-target antidepressant drugs.

摘要

阿米替法汀是唯一一种曾进入三期临床试验用于治疗抑郁症的药物,它是一种三重再摄取抑制剂(TRI),可同时与人单胺转运体(MATs)相互作用,包括人血清素转运体(hSERT)、人去甲肾上腺素转运体(hNET)和人多巴胺转运体(hDAT)。这种新型多靶点策略提高了药物疗效并降低了药物的毒副作用。然而,阿米替法汀多药理学作用模式的结合模式仍不明确,因此迫切需要对阿米替法汀与MATs之间的相互作用进行广泛探索。在本研究中,进行了总共0.63微秒的显式溶剂分子动力学(MD)模拟以及终点结合自由能(BFE)计算。MD模拟结果确定了一种共享的结合模式,该模式涉及MATs的S1位点的11个关键残基与阿米替法汀的结合,BFE计算结果与实验报告高度吻合。此外,通过分析三种MATs的S1位点每个残基的能量贡献变化以及额外的交叉诱变模拟,发现阿米替法汀在hSERT与其他两种MATs之间抑制率的差异主要来自非保守残基(hNET中的Y95、I172和T439以及hDAT中的Y95、I172、A169和T439)。由于发现多靶点药物在各种治疗靶点之间的合理抑制率是其安全性和耐受性的关键,本研究结果可能会进一步促进更有效但毒性更小的多靶点抗抑郁药物的合理设计。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验