EMBL/CRG Systems Biology Research Unit, Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain.
Universitat Pompeu Fabra (UPF), Barcelona, Spain.
PLoS Biol. 2018 Feb 16;16(2):e2003174. doi: 10.1371/journal.pbio.2003174. eCollection 2018 Feb.
Insects determine their body segments in two different ways. Short-germband insects, such as the flour beetle Tribolium castaneum, use a molecular clock to establish segments sequentially. In contrast, long-germband insects, such as the vinegar fly Drosophila melanogaster, determine all segments simultaneously through a hierarchical cascade of gene regulation. Gap genes constitute the first layer of the Drosophila segmentation gene hierarchy, downstream of maternal gradients such as that of Caudal (Cad). We use data-driven mathematical modelling and phase space analysis to show that shifting gap domains in the posterior half of the Drosophila embryo are an emergent property of a robust damped oscillator mechanism, suggesting that the regulatory dynamics underlying long- and short-germband segmentation are much more similar than previously thought. In Tribolium, Cad has been proposed to modulate the frequency of the segmentation oscillator. Surprisingly, our simulations and experiments show that the shift rate of posterior gap domains is independent of maternal Cad levels in Drosophila. Our results suggest a novel evolutionary scenario for the short- to long-germband transition and help explain why this transition occurred convergently multiple times during the radiation of the holometabolan insects.
昆虫通过两种不同的方式来确定它们的体节。短体节带昆虫,如粉斑螟 Tribolium castaneum,使用分子钟顺序建立体节。相比之下,长体节带昆虫,如黑腹果蝇 Drosophila melanogaster,则通过基因调控的层次级联来同时确定所有体节。缺口基因构成了果蝇体节基因层次的第一层,位于母体梯度(如尾侧(Cad)的下游。我们使用数据驱动的数学建模和相空间分析表明,在果蝇胚胎后半部分移动的缺口域是一个稳健的阻尼振荡器机制的涌现特性,这表明长体节和短体节带的调节动力学比之前认为的更为相似。在粉斑螟中,Cad 被提议调节体节振荡器的频率。令人惊讶的是,我们的模拟和实验表明,在果蝇中,后间隙域的移动速率与母体 Cad 水平无关。我们的结果为从短体节带到长体节带的过渡提供了一个新的进化情景,并有助于解释为什么在完全变态昆虫的辐射过程中,这种过渡多次趋同发生。