Spiess Kay, Taylor Shannon E, Fulton Timothy, Toh Kane, Saunders Dillan, Hwang Seongwon, Wang Yuxuan, Paige Brooks, Steventon Benjamin, Verd Berta
Department of Genetics, University of Cambridge, Cambridge, UK.
The Alan Turing Institute, London, UK.
iScience. 2024 Aug 30;27(9):110840. doi: 10.1016/j.isci.2024.110840. eCollection 2024 Sep 20.
The study of pattern formation has benefited from our ability to reverse-engineer gene regulatory network (GRN) structure from spatiotemporal quantitative gene expression data. Traditional approaches have focused on systems where the timescales of pattern formation and morphogenesis can be separated. Unfortunately, this is not the case in most animal patterning systems, where pattern formation and morphogenesis are co-occurring and tightly linked. To elucidate patterning mechanisms in such systems we need to adapt our GRN inference methodologies to include cell movements. In this work, we fill this gap by integrating quantitative data from live and fixed embryos to approximate gene expression trajectories (AGETs) in single cells and use these to reverse-engineer GRNs. This framework generates candidate GRNs that recapitulate pattern at the tissue level, gene expression dynamics at the single cell level, recover known genetic interactions and recapitulate experimental perturbations while incorporating cell movements explicitly for the first time.
模式形成的研究受益于我们从时空定量基因表达数据反向构建基因调控网络(GRN)结构的能力。传统方法聚焦于模式形成和形态发生的时间尺度可分离的系统。不幸的是,在大多数动物模式形成系统中并非如此,在这些系统中模式形成和形态发生同时发生且紧密相连。为了阐明此类系统中的模式形成机制,我们需要调整GRN推理方法以纳入细胞运动。在这项工作中,我们通过整合来自活体和固定胚胎的定量数据来近似单细胞中的基因表达轨迹(AGET),并利用这些数据反向构建GRN,从而填补了这一空白。该框架生成的候选GRN在组织水平上重现模式,在单细胞水平上重现基因表达动态,恢复已知的遗传相互作用并重现实验扰动,同时首次明确纳入细胞运动。