Suppr超能文献

控制 PEG 水凝胶网络中的巯基-马来酰亚胺反应动力学。

Control of thiol-maleimide reaction kinetics in PEG hydrogel networks.

机构信息

Department of Chemical Engineering, University of Massachusetts Amherst, 240 Thatcher Rd, Amherst, MA 01003-9364, United States.

Department of Chemical Engineering, University of Massachusetts Amherst, 240 Thatcher Rd, Amherst, MA 01003-9364, United States.

出版信息

Acta Biomater. 2018 Apr 1;70:120-128. doi: 10.1016/j.actbio.2018.01.043. Epub 2018 Feb 13.

Abstract

UNLABELLED

Michael-type addition reactions are widely used to polymerize biocompatible hydrogels. The thiol-maleimide modality achieves the highest macromer coupling efficiency of the reported Michael-type pairs, but the resulting hydrogel networks are heterogeneous because polymerization is faster than the individual components can be manually mixed. The reactivity of the thiol dictates the overall reaction speed, which can be slowed in organic solvents and acidic buffers. Since these modifications also reduce the biocompatibility of resulting hydrogels, we investigated a series of biocompatible buffers and crosslinkers to decelerate gelation while maintaining high cell viability. We found that lowering the polymer weight percentage (wt%), buffer concentration, and pH slowed gelation kinetics, but crosslinking with an electronegative peptide was optimal for both kinetics and cell viability. Including a high glucose medium supplement in the polymer solvent buffer improved the viability of the cells being encapsulated without impacting gelation time. Slowing the speed of polymerization resulted in more uniform hydrogels, both in terms of visual inspection and the diffusion of small molecules through the network. However, reactions that were too slow resulted in non-uniform particle dispersion due to settling, thus there is a trade-off in hydrogel network uniformity versus cell distribution in the hydrogels when using these networks in cell applications.

STATEMENT OF SIGNIFICANCE

The polymer network of thiol-maleimide hydrogels assembles faster than individual components can be uniformly mixed due to their fast gelation kinetics. The lack of homogeneity can result in variable cell-based assay results, resulting in batch-to-batch variability and limiting their use in predictive screening assays. Although these hydrogels are incredibly useful in tissue engineering, this network heterogeneity is a known problem in the field. We screened a variety of possible techniques to slow down the reaction speed and improve the homogeneity of these hydrogels, without sacrificing the viability and distribution of encapsulated cells. As others have reported, an electronegative crosslinker was the most effective technique to slow the reaction, but the chemical modification required is technically challenging. Of interest to a broad community, we screened buffer type, strength, and crosslinker electronegativity to find an optimal reaction speed that allows for high cell viability and small molecule diffusion, without allowing cells to settle during gelation, allowing application of these materials to the drug screening industry and tissue engineering community.

摘要

未加标签

迈克尔型加成反应被广泛用于聚合生物相容性水凝胶。巯基-马来酰亚胺模式实现了报道的迈克尔型对中最高的大分子偶联效率,但由此产生的水凝胶网络是不均匀的,因为聚合速度比各个成分可以手动混合的速度快。巯基的反应性决定了整体反应速度,可以在有机溶剂和酸性缓冲液中减慢。由于这些修饰也降低了所得水凝胶的生物相容性,我们研究了一系列生物相容性缓冲液和交联剂,以在保持高细胞活力的同时减慢凝胶化速度。我们发现,降低聚合物重量百分比(wt%)、缓冲液浓度和 pH 值会减慢凝胶化动力学,但与带负电的肽交联对于动力学和细胞活力都是最佳的。在聚合物溶剂缓冲液中加入高葡萄糖介质补充剂可提高被包封细胞的活力,而不会影响凝胶化时间。降低聚合速度会导致水凝胶更均匀,无论是从视觉检查还是小分子通过网络的扩散来看。然而,反应速度太慢会导致由于沉降而导致颗粒分布不均匀,因此在将这些网络用于细胞应用时,水凝胶网络的均匀性与细胞在水凝胶中的分布之间存在权衡。

意义声明

由于其快速的凝胶化动力学,巯基-马来酰亚胺水凝胶的聚合物网络的组装速度比单个成分可以均匀混合的速度快。由于缺乏均质性,可能会导致基于细胞的测定结果出现变化,从而导致批次间的变异性,并限制其在预测筛选测定中的使用。尽管这些水凝胶在组织工程中非常有用,但这种网络异质性是该领域已知的问题。我们筛选了各种可能的技术来减慢反应速度并提高这些水凝胶的均质性,而不会牺牲包封细胞的活力和分布。正如其他人所报道的那样,带负电的交联剂是减慢反应最有效的技术,但所需的化学修饰在技术上具有挑战性。对广泛的社区感兴趣的是,我们筛选了缓冲液类型、强度和交联剂的电负性,以找到允许高细胞活力和小分子扩散的最佳反应速度,而不会在凝胶化过程中允许细胞沉降,从而使这些材料能够应用于药物筛选行业和组织工程社区。

相似文献

5
Thiol-Methylsulfone-Based Hydrogels for 3D Cell Encapsulation.基于硫醇-甲基砜的水凝胶用于 3D 细胞包封。
ACS Appl Mater Interfaces. 2020 Feb 19;12(7):8062-8072. doi: 10.1021/acsami.0c00709. Epub 2020 Feb 10.

引用本文的文献

4
Smart responsive hydrogel systems applied in bone tissue engineering.应用于骨组织工程的智能响应水凝胶系统。
Front Bioeng Biotechnol. 2024 May 28;12:1389733. doi: 10.3389/fbioe.2024.1389733. eCollection 2024.
5
Radical-Mediated Degradation of Thiol-Maleimide Hydrogels.巯基-马来酰亚胺水凝胶的自由基介导降解
Adv Sci (Weinh). 2024 Jul;11(25):e2402191. doi: 10.1002/advs.202402191. Epub 2024 Apr 6.
9
Cytocompatibility Evaluation of PEG-Methylsulfone Hydrogels.聚乙二醇-甲砜水凝胶的细胞相容性评估
ACS Omega. 2023 Aug 23;8(35):32043-32052. doi: 10.1021/acsomega.3c03952. eCollection 2023 Sep 5.

本文引用的文献

6
Mechanics of intact bone marrow.完整骨髓的力学原理。
J Mech Behav Biomed Mater. 2015 Oct;50:299-307. doi: 10.1016/j.jmbbm.2015.06.023. Epub 2015 Jul 2.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验