文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

应用于骨组织工程的智能响应水凝胶系统。

Smart responsive hydrogel systems applied in bone tissue engineering.

作者信息

Wu Shunli, Gai Tingting, Chen Jie, Chen Xiguang, Chen Weikai

机构信息

College of Marine Life Sciences, Ocean University of China, Qingdao, China.

Hangzhou Singclean Medical Products Co., Ltd, Hangzhou, China.

出版信息

Front Bioeng Biotechnol. 2024 May 28;12:1389733. doi: 10.3389/fbioe.2024.1389733. eCollection 2024.


DOI:10.3389/fbioe.2024.1389733
PMID:38863497
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC11165218/
Abstract

The repair of irregular bone tissue suffers severe clinical problems due to the scarcity of an appropriate therapeutic carrier that can match dynamic and complex bone damage. Fortunately, stimuli-responsive hydrogel systems that are triggered by a special microenvironment could be an ideal method of regenerating bone tissue because of the injectability, gelatin, and spatiotemporally tunable drug release. Herein, we introduce the two main stimulus-response approaches, exogenous and endogenous, to forming hydrogels in bone tissue engineering. First, we summarize specific and distinct responses to an extensive range of external stimuli (e.g., ultraviolet, near-infrared, ultrasound, etc.) to form hydrogels created from biocompatible materials modified by various functional groups or hybrid functional nanoparticles. Furthermore, "smart" hydrogels, which respond to endogenous physiological or environmental stimuli (e.g., temperature, pH, enzyme, etc.), can achieve gelation by one injection without additional intervention. Moreover, the mild chemistry response-mediated hydrogel systems also offer fascinating prospects in bone tissue engineering, such as a Diels-Alder, Michael addition, thiol-Michael addition, and Schiff reactions, etc. The recent developments and challenges of various smart hydrogels and their application to drug administration and bone tissue engineering are discussed in this review. It is anticipated that advanced strategies and innovative ideas of hydrogels will be exploited in the clinical field and increase the quality of life for patients with bone damage.

摘要

由于缺乏能够匹配动态和复杂骨损伤的合适治疗载体,不规则骨组织的修复面临严重的临床问题。幸运的是,由特殊微环境触发的刺激响应水凝胶系统可能是一种理想的骨组织再生方法,因为它具有可注射性、明胶性以及时空可调的药物释放特性。在此,我们介绍骨组织工程中形成水凝胶的两种主要刺激响应方法,即外源性和内源性方法。首先,我们总结了对广泛的外部刺激(如紫外线、近红外、超声波等)的特定且独特的响应,以形成由各种官能团或混合功能纳米颗粒修饰的生物相容性材料制成的水凝胶。此外,对内源性生理或环境刺激(如温度、pH值、酶等)有响应的“智能”水凝胶,无需额外干预,一次注射即可实现凝胶化。而且,温和化学响应介导的水凝胶系统在骨组织工程中也展现出迷人的前景,如狄尔斯-阿尔德反应、迈克尔加成反应、硫醇-迈克尔加成反应和席夫反应等。本文综述了各种智能水凝胶的最新进展和挑战及其在药物给药和骨组织工程中的应用。预计水凝胶的先进策略和创新理念将在临床领域得到应用,并提高骨损伤患者的生活质量。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0d1c/11165218/cb675caeb30f/fbioe-12-1389733-g013.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0d1c/11165218/19b3e53b0dd8/fbioe-12-1389733-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0d1c/11165218/747b9a48aea7/fbioe-12-1389733-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0d1c/11165218/89c83c99109b/fbioe-12-1389733-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0d1c/11165218/1b6ec1a776da/fbioe-12-1389733-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0d1c/11165218/edaaaddf35b6/fbioe-12-1389733-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0d1c/11165218/8405a67f91f4/fbioe-12-1389733-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0d1c/11165218/8a897b5462e9/fbioe-12-1389733-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0d1c/11165218/3b7c812f8382/fbioe-12-1389733-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0d1c/11165218/32732bb090d2/fbioe-12-1389733-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0d1c/11165218/24ce4b24f325/fbioe-12-1389733-g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0d1c/11165218/00e16058901e/fbioe-12-1389733-g011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0d1c/11165218/25d632592f87/fbioe-12-1389733-g012.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0d1c/11165218/cb675caeb30f/fbioe-12-1389733-g013.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0d1c/11165218/19b3e53b0dd8/fbioe-12-1389733-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0d1c/11165218/747b9a48aea7/fbioe-12-1389733-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0d1c/11165218/89c83c99109b/fbioe-12-1389733-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0d1c/11165218/1b6ec1a776da/fbioe-12-1389733-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0d1c/11165218/edaaaddf35b6/fbioe-12-1389733-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0d1c/11165218/8405a67f91f4/fbioe-12-1389733-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0d1c/11165218/8a897b5462e9/fbioe-12-1389733-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0d1c/11165218/3b7c812f8382/fbioe-12-1389733-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0d1c/11165218/32732bb090d2/fbioe-12-1389733-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0d1c/11165218/24ce4b24f325/fbioe-12-1389733-g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0d1c/11165218/00e16058901e/fbioe-12-1389733-g011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0d1c/11165218/25d632592f87/fbioe-12-1389733-g012.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0d1c/11165218/cb675caeb30f/fbioe-12-1389733-g013.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索