Department of Biological Sciences, Wichita State University, Wichita, Fairmount 1845, KS 67260, USA.
Department of Biological Sciences, Wichita State University, Wichita, Fairmount 1845, KS 67260, USA.
Spine J. 2018 Jun;18(6):1070-1080. doi: 10.1016/j.spinee.2018.02.007. Epub 2018 Feb 13.
Advances in the development of biomaterials and stem cell therapy provide a promising approach to regenerating degenerated discs. The normal nucleus pulposus (NP) cells exhibit similar phenotype to chondrocytes. Because dental pulp stem cells (DPSCs) can be differentiated into chondrogenic cells, the DPSCs and DPSCs-derived chondrogenic cells encapsulated in type I and type II collagen hydrogels can potentially be transplanted into degenerated NP to repair damaged tissue. The motility of transplanted cells is critical because the cells need to migrate away from the hydrogels containing the cells of high density and disperse through the NP tissue after implantation.
The purpose of this study was to determine the motility of DPSC and DPSC-derived chondrogenic cells in type I and type II collagen hydrogels.
STUDY DESIGN/SETTING: The time lapse imaging that recorded cell migration was analyzed to quantify the cell migration velocity and distance.
The cell viability of DPSCs in native or poly(ethylene glycol) ether tetrasuccinimidyl glutarate (4S-StarPEG)-crosslinked type I and type II collagen hydrogels was determined using LIVE/DEAD cell viability assay and AlamarBlue assay. DPSCs were differentiated into chondrogenic cells. The migration of DPSCs and DPSC-derived chondrogenic cells in these hydrogels was recorded using a time lapse imaging system. This study was funded by the Regional Institute on Aging and Wichita Medical Research and Education Foundation, and the authors declare no competing interest.
DPSCs showed high cell viability in non-crosslinked and crosslinked collagen hydrogels. DPSCs migrated in collagen hydrogels, and the cell migration speed was not significantly different in either type I collagen or type II collagen hydrogels. The migration speed of DPSC-derived chondrogenic cells was higher in type I collagen hydrogel than in type II collagen hydrogel. Crosslinking of type I collagen with 4S-StarPEG significantly reduced the cell migration speed of DPSC-derived chondrogenic cells.
After implantation of collagen hydrogels encapsulating DPSCs or DPSC-derived chondrogenic cells, the cells can potentially migrate from the hydrogels and migrate into the NP tissue. This study also explored the differential cell motility of DPSCs and DPSC-derived chondrogenic cells in these collagen hydrogels.
生物材料和干细胞治疗的进步为再生退化的椎间盘提供了一种很有前途的方法。正常的髓核(NP)细胞表现出与软骨细胞相似的表型。由于牙髓干细胞(DPSCs)可以分化为软骨细胞,因此可以将 DPSCs 和包封在 I 型和 II 型胶原水凝胶中的 DPSCs 衍生的软骨细胞移植到退化的 NP 中以修复受损组织。移植细胞的迁移能力很重要,因为细胞需要从细胞密度高的水凝胶中迁移出来,并在植入后通过 NP 组织扩散。
本研究旨在确定 DPSCs 和 DPSCs 衍生的软骨细胞在 I 型和 II 型胶原水凝胶中的迁移能力。
研究设计/设置:通过时差成像记录细胞迁移,分析以定量细胞迁移速度和距离。
使用 LIVE/DEAD 细胞活力测定法和 AlamarBlue 测定法测定 DPSCs 在天然或聚(乙二醇)醚四琥珀酰亚胺基戊二酸(4S-StarPEG)交联的 I 型和 II 型胶原水凝胶中的细胞活力。DPSCs 分化为软骨细胞。使用时差成像系统记录 DPSCs 和 DPSCs 衍生的软骨细胞在这些水凝胶中的迁移。本研究由地区老龄化研究所和威奇托医学研究和教育基金会资助,作者没有竞争利益。
DPSCs 在未交联和交联的胶原水凝胶中表现出高细胞活力。DPSCs 在胶原水凝胶中迁移,并且在 I 型胶原或 II 型胶原水凝胶中,细胞迁移速度没有显着差异。DPSC 衍生的软骨细胞在 I 型胶原水凝胶中的迁移速度高于 II 型胶原水凝胶。用 4S-StarPEG 交联 I 型胶原显著降低了 DPSC 衍生的软骨细胞的迁移速度。
植入包封 DPSCs 或 DPSCs 衍生的软骨细胞的胶原水凝胶后,细胞有可能从水凝胶中迁移并迁移到 NP 组织中。本研究还探索了 DPSCs 和 DPSCs 衍生的软骨细胞在这些胶原水凝胶中的不同细胞迁移能力。