Suppr超能文献

牙髓干细胞来源的软骨细胞在 I 型和 II 型胶原水凝胶中表现出不同的细胞迁移能力。

Dental pulp stem cell-derived chondrogenic cells demonstrate differential cell motility in type I and type II collagen hydrogels.

机构信息

Department of Biological Sciences, Wichita State University, Wichita, Fairmount 1845, KS 67260, USA.

Department of Biological Sciences, Wichita State University, Wichita, Fairmount 1845, KS 67260, USA.

出版信息

Spine J. 2018 Jun;18(6):1070-1080. doi: 10.1016/j.spinee.2018.02.007. Epub 2018 Feb 13.

Abstract

BACKGROUND CONTEXT

Advances in the development of biomaterials and stem cell therapy provide a promising approach to regenerating degenerated discs. The normal nucleus pulposus (NP) cells exhibit similar phenotype to chondrocytes. Because dental pulp stem cells (DPSCs) can be differentiated into chondrogenic cells, the DPSCs and DPSCs-derived chondrogenic cells encapsulated in type I and type II collagen hydrogels can potentially be transplanted into degenerated NP to repair damaged tissue. The motility of transplanted cells is critical because the cells need to migrate away from the hydrogels containing the cells of high density and disperse through the NP tissue after implantation.

PURPOSE

The purpose of this study was to determine the motility of DPSC and DPSC-derived chondrogenic cells in type I and type II collagen hydrogels.

STUDY DESIGN/SETTING: The time lapse imaging that recorded cell migration was analyzed to quantify the cell migration velocity and distance.

METHODS

The cell viability of DPSCs in native or poly(ethylene glycol) ether tetrasuccinimidyl glutarate (4S-StarPEG)-crosslinked type I and type II collagen hydrogels was determined using LIVE/DEAD cell viability assay and AlamarBlue assay. DPSCs were differentiated into chondrogenic cells. The migration of DPSCs and DPSC-derived chondrogenic cells in these hydrogels was recorded using a time lapse imaging system. This study was funded by the Regional Institute on Aging and Wichita Medical Research and Education Foundation, and the authors declare no competing interest.

RESULT

DPSCs showed high cell viability in non-crosslinked and crosslinked collagen hydrogels. DPSCs migrated in collagen hydrogels, and the cell migration speed was not significantly different in either type I collagen or type II collagen hydrogels. The migration speed of DPSC-derived chondrogenic cells was higher in type I collagen hydrogel than in type II collagen hydrogel. Crosslinking of type I collagen with 4S-StarPEG significantly reduced the cell migration speed of DPSC-derived chondrogenic cells.

CONCLUSIONS

After implantation of collagen hydrogels encapsulating DPSCs or DPSC-derived chondrogenic cells, the cells can potentially migrate from the hydrogels and migrate into the NP tissue. This study also explored the differential cell motility of DPSCs and DPSC-derived chondrogenic cells in these collagen hydrogels.

摘要

背景

生物材料和干细胞治疗的进步为再生退化的椎间盘提供了一种很有前途的方法。正常的髓核(NP)细胞表现出与软骨细胞相似的表型。由于牙髓干细胞(DPSCs)可以分化为软骨细胞,因此可以将 DPSCs 和包封在 I 型和 II 型胶原水凝胶中的 DPSCs 衍生的软骨细胞移植到退化的 NP 中以修复受损组织。移植细胞的迁移能力很重要,因为细胞需要从细胞密度高的水凝胶中迁移出来,并在植入后通过 NP 组织扩散。

目的

本研究旨在确定 DPSCs 和 DPSCs 衍生的软骨细胞在 I 型和 II 型胶原水凝胶中的迁移能力。

研究设计/设置:通过时差成像记录细胞迁移,分析以定量细胞迁移速度和距离。

方法

使用 LIVE/DEAD 细胞活力测定法和 AlamarBlue 测定法测定 DPSCs 在天然或聚(乙二醇)醚四琥珀酰亚胺基戊二酸(4S-StarPEG)交联的 I 型和 II 型胶原水凝胶中的细胞活力。DPSCs 分化为软骨细胞。使用时差成像系统记录 DPSCs 和 DPSCs 衍生的软骨细胞在这些水凝胶中的迁移。本研究由地区老龄化研究所和威奇托医学研究和教育基金会资助,作者没有竞争利益。

结果

DPSCs 在未交联和交联的胶原水凝胶中表现出高细胞活力。DPSCs 在胶原水凝胶中迁移,并且在 I 型胶原或 II 型胶原水凝胶中,细胞迁移速度没有显着差异。DPSC 衍生的软骨细胞在 I 型胶原水凝胶中的迁移速度高于 II 型胶原水凝胶。用 4S-StarPEG 交联 I 型胶原显著降低了 DPSC 衍生的软骨细胞的迁移速度。

结论

植入包封 DPSCs 或 DPSCs 衍生的软骨细胞的胶原水凝胶后,细胞有可能从水凝胶中迁移并迁移到 NP 组织中。本研究还探索了 DPSCs 和 DPSCs 衍生的软骨细胞在这些胶原水凝胶中的不同细胞迁移能力。

相似文献

1
Dental pulp stem cell-derived chondrogenic cells demonstrate differential cell motility in type I and type II collagen hydrogels.
Spine J. 2018 Jun;18(6):1070-1080. doi: 10.1016/j.spinee.2018.02.007. Epub 2018 Feb 13.
3
Enhanced chondrogenic differentiation of dental pulp stem cells using nanopatterned PEG-GelMA-HA hydrogels.
Tissue Eng Part A. 2014 Nov;20(21-22):2817-29. doi: 10.1089/ten.TEA.2013.0614. Epub 2014 Jun 30.
4
Human dental pulp stem cells expressing transforming growth factor β3 transgene for cartilage-like tissue engineering.
Cytotherapy. 2013 Jun;15(6):712-25. doi: 10.1016/j.jcyt.2013.01.012. Epub 2013 Mar 7.
5
Pulp Regeneration by 3-dimensional Dental Pulp Stem Cell Constructs.
J Dent Res. 2018 Sep;97(10):1137-1143. doi: 10.1177/0022034518772260. Epub 2018 Apr 27.
6
Demineralized Dentin Matrix Induces Odontoblastic Differentiation of Dental Pulp Stem Cells.
Cells Tissues Organs. 2016;201(1):65-76. doi: 10.1159/000440952. Epub 2015 Nov 17.
9
10
Interferon Gamma-treated Dental Pulp Stem Cells Promote Human Mesenchymal Stem Cell Migration In Vitro.
J Endod. 2015 Aug;41(8):1259-64. doi: 10.1016/j.joen.2015.02.018. Epub 2015 Jun 4.

引用本文的文献

1
Advances in Molecular Function and Recombinant Expression of Human Collagen.
Pharmaceuticals (Basel). 2025 Mar 18;18(3):430. doi: 10.3390/ph18030430.
6
Application of Biocompatible Scaffolds in Stem-Cell-Based Dental Tissue Engineering.
Adv Exp Med Biol. 2023;1409:83-110. doi: 10.1007/5584_2022_734.
7
Materials for Dentoalveolar Bioprinting: Current State of the Art.
Biomedicines. 2021 Dec 30;10(1):71. doi: 10.3390/biomedicines10010071.
8
Application of dental stem cells in three-dimensional tissue regeneration.
World J Stem Cells. 2021 Nov 26;13(11):1610-1624. doi: 10.4252/wjsc.v13.i11.1610.

本文引用的文献

1
Fabrication and characterization of microspheres encapsulating astrocytes for neural regeneration.
ACS Biomater Sci Eng. 2017 Jul 10;3(7):1313-1321. doi: 10.1021/acsbiomaterials.6b00229. Epub 2016 Jul 5.
3
Construction and biocompatibility of a thin type I/II collagen composite scaffold.
Cell Tissue Bank. 2018 Mar;19(1):47-59. doi: 10.1007/s10561-017-9653-2. Epub 2017 Aug 14.
4
An interpenetrating network-strengthened and toughened hydrogel that supports cell-based nucleus pulposus regeneration.
Biomaterials. 2017 Aug;136:12-28. doi: 10.1016/j.biomaterials.2017.05.017. Epub 2017 May 10.
7
Dynamic behaviors of astrocytes in chemically modified fibrin and collagen hydrogels.
Integr Biol (Camb). 2016 May 16;8(5):624-34. doi: 10.1039/c6ib00003g. Epub 2016 Apr 15.
8
Repair of Avascular Meniscus Tears with Electrospun Collagen Scaffolds Seeded with Human Cells.
Tissue Eng Part A. 2016 Mar;22(5-6):436-48. doi: 10.1089/ten.TEA.2015.0284. Epub 2016 Mar 3.
9
Injectable hydrogel provides growth-permissive environment for human nucleus pulposus cells.
J Biomed Mater Res A. 2016 Feb;104(2):419-26. doi: 10.1002/jbm.a.35580. Epub 2015 Oct 15.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验