Suppr超能文献

与损伤相关条件下大脑的材料特性 - 实验和计算建模。

Material properties of the brain in injury-relevant conditions - Experiments and computational modeling.

机构信息

Department of Biomedical Engineering, Worcester Polytechnic Institute, Worcester, MA 01605, USA.

Department of Biomedical Engineering, Worcester Polytechnic Institute, Worcester, MA 01605, USA; Department of Mechanical Engineering, Worcester Polytechnic Institute, Worcester, MA 01609, USA.

出版信息

J Mech Behav Biomed Mater. 2018 Apr;80:222-234. doi: 10.1016/j.jmbbm.2018.02.005. Epub 2018 Feb 6.

Abstract

Material properties of the brain have been extensively studied but remain poorly characterized. The vast variations in constitutive models and material constants are well documented. However, no study exists to translate the variations into disparities in impact-induced brain strains most relevant to brain injury. Here, we reviewed a subset of injury-relevant brain material properties either characterized in experiments or adopted in recent head injury models. To highlight how variations in measured brain material properties manifested in simulated brain strains, we selected six experiments that have provided a complete set of brain material model and constants to implement a common head injury model. Responses resulting from two extreme events representing a high-rate cadaveric head impact and a low-rate in vivo head rotation, respectively, varied substantially. We hypothesized, and further confirmed, that the time-varying shear moduli at the appropriate time scales (e.g., ~5 ms and ~40 ms corresponding to the impulse durations of the major acceleration peaks for the two impacts, respectively), rather than the initial or long-term shear moduli, were the most indicative of impact-induced brain strains. These results underscored the need to implement measured brain material properties into an actual head injury model for evaluation. They may also provide guidelines to better characterize brain material properties in future experiments and head injury models. Finally, our finding provided a practical solution to satisfy head injury model validation requirements at both ends of the impact severity spectrum. This would improve the confidence in model simulation performance across a range of time scales relevant to concussion and sub-concussion in the real-world.

摘要

大脑的材料特性已经得到了广泛的研究,但仍未得到充分的描述。本构模型和材料常数的巨大变化得到了充分的记录。然而,目前还没有研究将这些变化转化为与脑损伤最相关的冲击引起的脑应变差异。在这里,我们回顾了一组与损伤相关的脑材料特性,这些特性要么是在实验中得到了描述,要么是在最近的头部损伤模型中得到了采用。为了突出测量的脑材料特性在模拟脑应变中的变化,我们选择了六个实验,这些实验提供了完整的脑材料模型和常数来实现一个常见的头部损伤模型。分别代表高速尸体头部冲击和低速体内头部旋转的两个极端事件的响应变化非常大。我们假设,并进一步证实,在适当的时间尺度上的时变剪切模量(例如,分别对应于两个冲击的主要加速度峰值的脉冲持续时间约为 5ms 和 40ms),而不是初始或长期剪切模量,最能指示冲击引起的脑应变。这些结果强调了将测量的脑材料特性实施到实际的头部损伤模型中进行评估的必要性。它们也可能为未来的实验和头部损伤模型提供更好地描述脑材料特性的指南。最后,我们的发现为满足冲击严重程度谱两端的头部损伤模型验证要求提供了一个实际的解决方案。这将提高对与现实世界中的脑震荡和亚脑震荡相关的一系列时间尺度的模型模拟性能的信心。

相似文献

5
Comparison of Ice Hockey Goaltender Helmets for Concussion Type Impacts.冰球守门员头盔在撞击性脑震荡类型中的比较。
Ann Biomed Eng. 2018 Jul;46(7):986-1000. doi: 10.1007/s10439-018-2017-7. Epub 2018 Mar 29.
8
Finite Element Methods in Human Head Impact Simulations: A Review.有限元方法在人体头部撞击模拟中的应用综述
Ann Biomed Eng. 2019 Sep;47(9):1832-1854. doi: 10.1007/s10439-019-02205-4. Epub 2019 Jan 28.

引用本文的文献

3
Data-driven Uncertainty Quantification in Computational Human Head Models.计算人体头部模型中数据驱动的不确定性量化
Comput Methods Appl Mech Eng. 2022 Aug 1;398. doi: 10.1016/j.cma.2022.115108. Epub 2022 Jun 21.
5
Exponents of the one-term Ogden model: insights from simple shear.单参数 Ogden 模型的指数:简单剪切的启示。
Philos Trans A Math Phys Eng Sci. 2022 Oct 17;380(2234):20210328. doi: 10.1098/rsta.2021.0328. Epub 2022 Aug 29.

本文引用的文献

1
Viscoelastic parameter identification of human brain tissue.人脑组织的粘弹性参数识别
J Mech Behav Biomed Mater. 2017 Oct;74:463-476. doi: 10.1016/j.jmbbm.2017.07.014. Epub 2017 Jul 11.
3
Validation performance comparison for finite element models of the human brain.人脑有限元模型的验证性能比较
Comput Methods Biomech Biomed Engin. 2017 Sep;20(12):1273-1288. doi: 10.1080/10255842.2017.1340462. Epub 2017 Jul 12.
4
Rheological characterization of human brain tissue.人脑组织的流变学特性
Acta Biomater. 2017 Sep 15;60:315-329. doi: 10.1016/j.actbio.2017.06.024. Epub 2017 Jun 26.
9
Mechanical characterization of human brain tissue.人脑组织的力学特性
Acta Biomater. 2017 Jan 15;48:319-340. doi: 10.1016/j.actbio.2016.10.036. Epub 2016 Oct 27.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验