Suppr超能文献

与损伤相关条件下大脑的材料特性 - 实验和计算建模。

Material properties of the brain in injury-relevant conditions - Experiments and computational modeling.

机构信息

Department of Biomedical Engineering, Worcester Polytechnic Institute, Worcester, MA 01605, USA.

Department of Biomedical Engineering, Worcester Polytechnic Institute, Worcester, MA 01605, USA; Department of Mechanical Engineering, Worcester Polytechnic Institute, Worcester, MA 01609, USA.

出版信息

J Mech Behav Biomed Mater. 2018 Apr;80:222-234. doi: 10.1016/j.jmbbm.2018.02.005. Epub 2018 Feb 6.

Abstract

Material properties of the brain have been extensively studied but remain poorly characterized. The vast variations in constitutive models and material constants are well documented. However, no study exists to translate the variations into disparities in impact-induced brain strains most relevant to brain injury. Here, we reviewed a subset of injury-relevant brain material properties either characterized in experiments or adopted in recent head injury models. To highlight how variations in measured brain material properties manifested in simulated brain strains, we selected six experiments that have provided a complete set of brain material model and constants to implement a common head injury model. Responses resulting from two extreme events representing a high-rate cadaveric head impact and a low-rate in vivo head rotation, respectively, varied substantially. We hypothesized, and further confirmed, that the time-varying shear moduli at the appropriate time scales (e.g., ~5 ms and ~40 ms corresponding to the impulse durations of the major acceleration peaks for the two impacts, respectively), rather than the initial or long-term shear moduli, were the most indicative of impact-induced brain strains. These results underscored the need to implement measured brain material properties into an actual head injury model for evaluation. They may also provide guidelines to better characterize brain material properties in future experiments and head injury models. Finally, our finding provided a practical solution to satisfy head injury model validation requirements at both ends of the impact severity spectrum. This would improve the confidence in model simulation performance across a range of time scales relevant to concussion and sub-concussion in the real-world.

摘要

大脑的材料特性已经得到了广泛的研究,但仍未得到充分的描述。本构模型和材料常数的巨大变化得到了充分的记录。然而,目前还没有研究将这些变化转化为与脑损伤最相关的冲击引起的脑应变差异。在这里,我们回顾了一组与损伤相关的脑材料特性,这些特性要么是在实验中得到了描述,要么是在最近的头部损伤模型中得到了采用。为了突出测量的脑材料特性在模拟脑应变中的变化,我们选择了六个实验,这些实验提供了完整的脑材料模型和常数来实现一个常见的头部损伤模型。分别代表高速尸体头部冲击和低速体内头部旋转的两个极端事件的响应变化非常大。我们假设,并进一步证实,在适当的时间尺度上的时变剪切模量(例如,分别对应于两个冲击的主要加速度峰值的脉冲持续时间约为 5ms 和 40ms),而不是初始或长期剪切模量,最能指示冲击引起的脑应变。这些结果强调了将测量的脑材料特性实施到实际的头部损伤模型中进行评估的必要性。它们也可能为未来的实验和头部损伤模型提供更好地描述脑材料特性的指南。最后,我们的发现为满足冲击严重程度谱两端的头部损伤模型验证要求提供了一个实际的解决方案。这将提高对与现实世界中的脑震荡和亚脑震荡相关的一系列时间尺度的模型模拟性能的信心。

相似文献

1
Material properties of the brain in injury-relevant conditions - Experiments and computational modeling.
J Mech Behav Biomed Mater. 2018 Apr;80:222-234. doi: 10.1016/j.jmbbm.2018.02.005. Epub 2018 Feb 6.
2
Displacement- and Strain-Based Discrimination of Head Injury Models across a Wide Range of Blunt Conditions.
Ann Biomed Eng. 2020 Jun;48(6):1661-1677. doi: 10.1007/s10439-020-02496-y. Epub 2020 Apr 2.
3
Concussion in professional football: biomechanics of the struck player--part 14.
Neurosurgery. 2007 Aug;61(2):313-27; discussion 327-8. doi: 10.1227/01.NEU.0000279969.02685.D0.
4
Effect of Tissue Material Properties in Blast Loading: Coupled Experimentation and Finite Element Simulation.
Ann Biomed Eng. 2019 Sep;47(9):2019-2032. doi: 10.1007/s10439-018-02178-w. Epub 2018 Dec 6.
5
Comparison of Ice Hockey Goaltender Helmets for Concussion Type Impacts.
Ann Biomed Eng. 2018 Jul;46(7):986-1000. doi: 10.1007/s10439-018-2017-7. Epub 2018 Mar 29.
8
Finite Element Methods in Human Head Impact Simulations: A Review.
Ann Biomed Eng. 2019 Sep;47(9):1832-1854. doi: 10.1007/s10439-019-02205-4. Epub 2019 Jan 28.
9
Brain tissue strains vary with head impact location: A possible explanation for increased concussion risk in struck versus striking football players.
Clin Biomech (Bristol). 2019 Apr;64:49-57. doi: 10.1016/j.clinbiomech.2018.03.021. Epub 2018 Mar 29.

引用本文的文献

1
Surface-based versus voxel-based finite element head models: comparative analyses of strain responses.
Biomech Model Mechanobiol. 2025 Mar 11. doi: 10.1007/s10237-025-01940-z.
2
Effects of stress-dependent growth on evolution of sulcal direction and curvature in models of cortical folding.
Brain Multiphys. 2023;4. doi: 10.1016/j.brain.2023.100065. Epub 2023 Mar 8.
3
Data-driven Uncertainty Quantification in Computational Human Head Models.
Comput Methods Appl Mech Eng. 2022 Aug 1;398. doi: 10.1016/j.cma.2022.115108. Epub 2022 Jun 21.
5
Exponents of the one-term Ogden model: insights from simple shear.
Philos Trans A Math Phys Eng Sci. 2022 Oct 17;380(2234):20210328. doi: 10.1098/rsta.2021.0328. Epub 2022 Aug 29.
6
Use of Brain Biomechanical Models for Monitoring Impact Exposure in Contact Sports.
Ann Biomed Eng. 2022 Nov;50(11):1389-1408. doi: 10.1007/s10439-022-02999-w. Epub 2022 Jul 22.
7
Effective Viscoplastic-Softening Model Suitable for Brain Impact Modelling.
Materials (Basel). 2022 Mar 18;15(6):2270. doi: 10.3390/ma15062270.
8
Cerebral vascular strains in dynamic head impact using an upgraded model with brain material property heterogeneity.
J Mech Behav Biomed Mater. 2022 Feb;126:104967. doi: 10.1016/j.jmbbm.2021.104967. Epub 2021 Nov 18.
9
A Machine Learning Approach to Investigate the Uncertainty of Tissue-Level Injury Metrics for Cerebral Contusion.
Front Bioeng Biotechnol. 2021 Oct 8;9:714128. doi: 10.3389/fbioe.2021.714128. eCollection 2021.
10
MR Imaging of Human Brain Mechanics In Vivo: New Measurements to Facilitate the Development of Computational Models of Brain Injury.
Ann Biomed Eng. 2021 Oct;49(10):2677-2692. doi: 10.1007/s10439-021-02820-0. Epub 2021 Jul 1.

本文引用的文献

1
Viscoelastic parameter identification of human brain tissue.
J Mech Behav Biomed Mater. 2017 Oct;74:463-476. doi: 10.1016/j.jmbbm.2017.07.014. Epub 2017 Jul 11.
2
Performance Evaluation of a Pre-computed Brain Response Atlas in Dummy Head Impacts.
Ann Biomed Eng. 2017 Oct;45(10):2437-2450. doi: 10.1007/s10439-017-1888-3. Epub 2017 Jul 14.
3
Validation performance comparison for finite element models of the human brain.
Comput Methods Biomech Biomed Engin. 2017 Sep;20(12):1273-1288. doi: 10.1080/10255842.2017.1340462. Epub 2017 Jul 12.
4
Rheological characterization of human brain tissue.
Acta Biomater. 2017 Sep 15;60:315-329. doi: 10.1016/j.actbio.2017.06.024. Epub 2017 Jun 26.
5
Injury prediction and vulnerability assessment using strain and susceptibility measures of the deep white matter.
Biomech Model Mechanobiol. 2017 Oct;16(5):1709-1727. doi: 10.1007/s10237-017-0915-5. Epub 2017 May 12.
6
Multiscale modeling in the clinic: diseases of the brain and nervous system.
Brain Inform. 2017 Dec;4(4):219-230. doi: 10.1007/s40708-017-0067-5. Epub 2017 May 9.
7
A Three-Dimensional Computational Human Head Model That Captures Live Human Brain Dynamics.
J Neurotrauma. 2017 Jul 1;34(13):2154-2166. doi: 10.1089/neu.2016.4744. Epub 2017 Apr 10.
8
Regional mechanical properties of human brain tissue for computational models of traumatic brain injury.
Acta Biomater. 2017 Jun;55:333-339. doi: 10.1016/j.actbio.2017.03.037. Epub 2017 Mar 27.
9
Mechanical characterization of human brain tissue.
Acta Biomater. 2017 Jan 15;48:319-340. doi: 10.1016/j.actbio.2016.10.036. Epub 2016 Oct 27.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验