Kun Sándor, Begum Jaida, Kyriakis Efthimios, Stamati Evgenia C V, Barkas Thomas A, Szennyes Eszter, Bokor Éva, Szabó Katalin E, Stravodimos George A, Sipos Ádám, Docsa Tibor, Gergely Pál, Moffatt Colin, Patraskaki Myrto S, Kokolaki Maria C, Gkerdi Alkistis, Skamnaki Vassiliki T, Leonidas Demetres D, Somsák László, Hayes Joseph M
Department of Organic Chemistry, University of Debrecen, POB 400, H-4002 Debrecen, Hungary.
School of Physical Sciences & Computing, Division of Chemistry, University of Central Lancashire, Preston PR1 2HE, United Kingdom; School of Chemistry, University of Leeds, Leeds, LS2 9JT, United Kingdom.
Eur J Med Chem. 2018 Mar 10;147:266-278. doi: 10.1016/j.ejmech.2018.01.095. Epub 2018 Feb 2.
3-(β-d-Glucopyranosyl)-5-substituted-1,2,4-triazoles have been revealed as an effective scaffold for the development of potent glycogen phosphorylase (GP) inhibitors but with the potency very sensitive to the nature of the alkyl/aryl 5-substituent (Kun et al., Eur. J. Med. Chem. 2014, 76, 567). For a training set of these ligands, quantum mechanics-polarized ligand docking (QM-PLD) demonstrated good potential to identify larger differences in potencies (predictive index PI = 0.82) and potent inhibitors with K's < 10 μM (AU-ROC = 0.86). Accordingly, in silico screening of 2335 new analogues exploiting the ZINC docking database was performed and nine predicted candidates selected for synthesis. The compounds were prepared in O-perbenzoylated forms by either ring transformation of 5-β-d-glucopyranosyl tetrazole by N-benzyl-arenecarboximidoyl chlorides, ring closure of C-(β-d-glucopyranosyl)formamidrazone with aroyl chlorides, or that of N-(β-d-glucopyranosylcarbonyl)arenethiocarboxamides by hydrazine, followed by deprotections. Kinetics experiments against rabbit muscle GPb (rmGPb) and human liver GPa (hlGPa) revealed five compounds as potent low μM inhibitors with three of these on the submicromolar range for rmGPa. X-ray crystallographic analysis sourced the potency to a combination of favorable interactions from the 1,2,4-triazole and suitable aryl substituents in the GP catalytic site. The compounds also revealed promising calculated pharmacokinetic profiles.
3-(β-D-吡喃葡萄糖基)-5-取代-1,2,4-三唑已被证明是开发强效糖原磷酸化酶(GP)抑制剂的有效骨架,但活性对烷基/芳基5-取代基的性质非常敏感(Kun等人,《欧洲医药化学杂志》,2014年,76卷,567页)。对于这些配体的训练集,量子力学极化配体对接(QM-PLD)显示出识别活性较大差异(预测指数PI = 0.82)和K值<10 μM的强效抑制剂(AU-ROC = 0.86)的良好潜力。因此,利用ZINC对接数据库对2335个新类似物进行了计算机筛选,并选择了9个预测候选物进行合成。这些化合物通过5-β-D-吡喃葡萄糖基四唑与N-苄基-芳基甲脒酰氯的环转化、C-(β-D-吡喃葡萄糖基)甲脒腙与芳酰氯的环化反应,或N-(β-D-吡喃葡萄糖基羰基)芳基硫代羧酰胺与肼的环化反应,然后进行脱保护反应,以O-过苯甲酰化形式制备。针对兔肌肉GPb(rmGPb)和人肝脏GPa(hlGPa)的动力学实验表明,有5种化合物是强效低μM抑制剂,其中3种对rmGPa处于亚微摩尔范围。X射线晶体学分析将活性归因于1,2,4-三唑的有利相互作用和GP催化位点中合适的芳基取代基的组合。这些化合物还显示出有前景的计算药代动力学概况。