Willis T J, Porter D G, Voneshen D J, Uthayakumar S, Demmel F, Gutmann M J, Roger M, Refson K, Goff J P
Department of Physics, Royal Holloway, University of London, Egham, TW20 0EX, UK.
ISIS Facility, Rutherford Appleton Laboratory, Chilton, Didcot, OX11 0QX, UK.
Sci Rep. 2018 Feb 16;8(1):3210. doi: 10.1038/s41598-018-21354-5.
High performance batteries based on the movement of Li ions in Li CoO have made possible a revolution in mobile electronic technology, from laptops to mobile phones. However, the scarcity of Li and the demand for energy storage for renewables has led to intense interest in Na-ion batteries, including structurally-related Na CoO. Here we have determined the diffusion mechanism for NaCoO using diffuse x-ray scattering, quasi-elastic neutron scattering and ab-initio molecular dynamics simulations, and we find that the sodium ordering provides diffusion pathways and governs the diffusion rate. Above T ~ 290 K the so-called partially disordered stripe superstructure provides channels for quasi-1D diffusion, and melting of the sodium ordering leads to 2D superionic diffusion above T ~ 370 K. We obtain quantitative agreement between our microscopic study of the hopping mechanism and bulk self-diffusion measurements. Our approach can be applied widely to other Na- or Li-ion battery materials.
基于锂离子在钴酸锂中移动的高性能电池,使得从笔记本电脑到手机的移动电子技术发生了一场革命。然而,锂的稀缺以及可再生能源储能的需求,引发了人们对钠离子电池的浓厚兴趣,包括结构相关的钴酸钠。在这里,我们利用漫散射X射线散射、准弹性中子散射和从头算分子动力学模拟确定了钴酸钠的扩散机制,并且我们发现钠的有序排列提供了扩散途径并控制扩散速率。在T ~ 290 K以上,所谓的部分无序条纹超结构为准一维扩散提供通道,而钠有序排列的熔化导致在T ~ 370 K以上二维超离子扩散。我们在对跳跃机制的微观研究和体自扩散测量之间获得了定量一致性。我们的方法可以广泛应用于其他钠离子或锂离子电池材料。