Kaufman Jonas L, Vinckevičiūtė Julija, Krishna Kolli Sanjeev, Gabriel Goiri Jon, Van der Ven Anton
Materials Department , University of California , Santa Barbara , CA 93106 , USA.
Philos Trans A Math Phys Eng Sci. 2019 Aug 26;377(2152):20190020. doi: 10.1098/rsta.2019.0020. Epub 2019 Jul 8.
Intercalation compounds are popular candidate electrode materials for sodium-ion batteries and other 'beyond lithium-ion' technologies including potassium- and magnesium-ion batteries. We summarize first-principles efforts to elucidate the behaviour of such compounds in the layered and spinel structures. Trends based on the size and valence of the intercalant and the ionicity of the host are sufficient to explain phase stability and ordering phenomena, which in turn determine the equilibrium voltage profile. For the layered structures, we provide an overarching view of intercalant orderings in prismatic coordination based on antiphase boundaries, which has important consequences for diffusion. We examine details of stacking sequence transitions between different layered structures by calculating stacking fault energies and discussing the nature of dislocations. A better understanding of these transitions will likely aid the development of batteries with improved cyclability. This article is part of a discussion meeting issue 'Energy materials for a low carbon future'.
插层化合物是钠离子电池以及包括钾离子和镁离子电池在内的其他“超越锂离子”技术中备受青睐的候选电极材料。我们总结了基于第一性原理的研究成果,以阐明此类化合物在层状和尖晶石结构中的行为。基于插层剂的尺寸和价态以及主体的离子性得出的趋势足以解释相稳定性和有序现象,而这些现象反过来又决定了平衡电压分布。对于层状结构,我们基于反相边界提供了棱柱配位中插层剂有序排列的总体视图,这对扩散具有重要影响。我们通过计算堆垛层错能并讨论位错的性质来研究不同层状结构之间堆叠序列转变的细节。更好地理解这些转变可能有助于开发具有更高循环稳定性的电池。本文是“低碳未来的能源材料”讨论会议文集的一部分。