Department of Energy and Materials Engineering and Advanced Energy and Electronic Materials Research Center, Dongguk University-Seoul , Seoul 100-715, Republic of Korea.
Nano Lett. 2014 Nov 12;14(11):6559-63. doi: 10.1021/nl503169v. Epub 2014 Oct 9.
Surface coating of active materials has been one of the most effective strategies to mitigate undesirable side reactions and thereby improve the overall battery performance. In this direction, aluminum oxide (Al2O3) is one of the most widely adopted coating materials due to its easy synthesis and low material cost. Nevertheless, the effect of Al2O3 coating on carrier ion diffusion has been investigated mainly for Li ion batteries, and the corresponding understanding for emerging Na ion batteries is currently missing. Using ab initio molecular dynamics calculations, herein, we first find that, unlike lithiation, sodiation of Al2O3 is thermodynamically unfavorable. Nonetheless, there can still exist a threshold in the Na ion content in Al2O3 before further diffusion into the adjacent active material, delivering a new insight that both thermodynamics and kinetics should be taken into account to describe ionic diffusion in any material media. Furthermore, Na ion diffusivity in NaxAl2O3 turns out to be much higher than Li ion diffusivity in LixAl2O3, a result opposite to the conventional stereotype based on the atomic radius consideration. While hopping between the O-rich trapping sites via an Na-O bond breaking/making process is identified as the main Na ion diffusion mechanism, the weaker Na-O bond strength than the Li-O counterpart turns out to be the origin of the superior diffusivity of Na ions.
表面活性材料涂层是减轻不良副反应、提高整体电池性能的最有效策略之一。在这方面,氧化铝(Al2O3)由于其易于合成和低材料成本而成为最广泛采用的涂层材料之一。然而,氧化铝涂层对载流子离子扩散的影响主要针对锂离子电池进行了研究,而对于新兴的钠离子电池,目前还缺乏相应的认识。本文采用从头算分子动力学计算,首次发现与锂化不同,氧化铝的钠化在热力学上是不利的。然而,在进一步扩散到相邻活性材料之前,氧化铝中仍可能存在钠离子含量的阈值,这提供了一个新的见解,即在任何材料介质中描述离子扩散时,都应该考虑热力学和动力学。此外,在 NaxAl2O3 中的钠离子扩散率远高于在 LixAl2O3 中的锂离子扩散率,这一结果与基于原子半径考虑的传统刻板印象相反。虽然通过 Na-O 键的断裂/形成过程在富 O 捕获位点之间跳跃被确定为钠离子主要扩散机制,但与 Li-O 键相比,较弱的 Na-O 键强度是钠离子扩散率较高的原因。