Suppr超能文献

通过扫描透射电子显微镜对液态锂-氧微型电池中阴极反应的原位表征。

Operando characterization of cathodic reactions in a liquid-state lithium-oxygen micro-battery by scanning transmission electron microscopy.

作者信息

Liu Pan, Han Jiuhui, Guo Xianwei, Ito Yoshikazu, Yang Chuchu, Ning Shoucong, Fujita Takeshi, Hirata Akihiko, Chen Mingwei

机构信息

School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200030, P.R. China.

Advanced Institute for Materials Research, Tohoku University, Sendai, 980-8577, Japan.

出版信息

Sci Rep. 2018 Feb 16;8(1):3134. doi: 10.1038/s41598-018-21503-w.

Abstract

Rechargeable non-aqueous lithium-oxygen batteries with a large theoretical capacity are emerging as a high-energy electrochemical device for sustainable energy strategy. Despite many efforts made to understand the fundamental Li-O electrochemistry, the kinetic process of cathodic reactions, associated with the formation and decomposition of a solid LiO phase during charging and discharging, remains debate. Here we report direct visualization of the charge/discharge reactions on a gold cathode in a non-aqueous lithium-oxygen micro-battery using liquid-cell aberration-corrected scanning transmission electron microscopy (STEM) combining with synchronized electrochemical measurements. The real-time and real-space characterization by time-resolved STEM reveals the electrochemical correspondence of discharge/charge overpotentials to the nucleation, growth and decomposition of LiO at a constant current density. The nano-scale operando observations would enrich our knowledge on the underlying reaction mechanisms of lithium-oxygen batteries during round-trip discharging and charging and shed lights on the strategies in improving the performances of lithium-oxygen batteries by tailoring the cathodic reactions.

摘要

具有大理论容量的可充电非水锂氧电池正成为可持续能源战略中的一种高能电化学装置。尽管人们为理解锂氧基本电化学做出了许多努力,但与充放电过程中固态LiO相的形成和分解相关的阴极反应动力学过程仍存在争议。在此,我们报告了使用液池像差校正扫描透射电子显微镜(STEM)结合同步电化学测量,对非水锂氧微型电池中金阴极上的充放电反应进行直接可视化。通过时间分辨STEM进行的实时和实空间表征揭示了在恒定电流密度下,放电/充电过电位与LiO的成核、生长和分解之间的电化学对应关系。纳米尺度的原位观察将丰富我们对锂氧电池往返充放电过程中潜在反应机制的认识,并为通过调整阴极反应来提高锂氧电池性能的策略提供启示。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/04b7/5816613/ca6182a2c954/41598_2018_21503_Fig1_HTML.jpg

相似文献

3
Recent developments of aprotic lithium-oxygen batteries: functional materials determine the electrochemical performance.
Sci Bull (Beijing). 2017 Mar 30;62(6):442-452. doi: 10.1016/j.scib.2017.01.037. Epub 2017 Jan 27.
4
Charging/Discharging Nanomorphology Asymmetry and Rate-Dependent Capacity Degradation in Li-Oxygen Battery.
Nano Lett. 2015 Dec 9;15(12):8260-5. doi: 10.1021/acs.nanolett.5b03812. Epub 2015 Nov 10.
6
Operando NMR characterization of a metal-air battery using a double-compartment cell design.
Solid State Nucl Magn Reson. 2021 Jun;113:101731. doi: 10.1016/j.ssnmr.2021.101731. Epub 2021 Mar 29.
7
detection and suppression of spurious singlet oxygen in Li-O batteries.
Faraday Discuss. 2024 Jan 29;248(0):190-209. doi: 10.1039/d3fd00081h.
8
Potassium Superoxide: A Unique Alternative for Metal-Air Batteries.
Acc Chem Res. 2018 Sep 18;51(9):2335-2343. doi: 10.1021/acs.accounts.8b00332. Epub 2018 Sep 4.
9
Revealing the reaction mechanisms of Li-O batteries using environmental transmission electron microscopy.
Nat Nanotechnol. 2017 Jul;12(6):535-539. doi: 10.1038/nnano.2017.27. Epub 2017 Mar 27.

本文引用的文献

2
Revealing the reaction mechanisms of Li-O batteries using environmental transmission electron microscopy.
Nat Nanotechnol. 2017 Jul;12(6):535-539. doi: 10.1038/nnano.2017.27. Epub 2017 Mar 27.
4
Charging/Discharging Nanomorphology Asymmetry and Rate-Dependent Capacity Degradation in Li-Oxygen Battery.
Nano Lett. 2015 Dec 9;15(12):8260-5. doi: 10.1021/acs.nanolett.5b03812. Epub 2015 Nov 10.
5
Real-Time XRD Studies of Li-O2 Electrochemical Reaction in Nonaqueous Lithium-Oxygen Battery.
J Phys Chem Lett. 2012 Nov 1;3(21):3210-5. doi: 10.1021/jz301453t. Epub 2012 Oct 19.
6
Probing the Reaction Kinetics of the Charge Reactions of Nonaqueous Li-O2 Batteries.
J Phys Chem Lett. 2013 Jan 3;4(1):93-9. doi: 10.1021/jz3018368. Epub 2012 Dec 18.
7
Twin Problems of Interfacial Carbonate Formation in Nonaqueous Li-O2 Batteries.
J Phys Chem Lett. 2012 Apr 19;3(8):997-1001. doi: 10.1021/jz300243r. Epub 2012 Mar 30.
8
Mechanisms of Morphological Evolution of Li2O2 Particles during Electrochemical Growth.
J Phys Chem Lett. 2013 Apr 4;4(7):1060-4. doi: 10.1021/jz4003586. Epub 2013 Mar 18.
9
Nucleation and Growth of Lithium Peroxide in the Li-O2 Battery.
Nano Lett. 2015 Sep 9;15(9):5995-6002. doi: 10.1021/acs.nanolett.5b02149. Epub 2015 Aug 10.
10
The role of LiO2 solubility in O2 reduction in aprotic solvents and its consequences for Li-O2 batteries.
Nat Chem. 2014 Dec;6(12):1091-9. doi: 10.1038/nchem.2101. Epub 2014 Nov 10.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验