Lim Hyunseob, Yilmaz Eda, Byon Hye Ryung
†Byon Initiative Research Unit, RIKEN Advanced Science Institute, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan.
‡Department of Chemistry and Division of Advanced Materials Science, Pohang University of Science and Technology (POSTECH), San 31, Hyoja-Dong, Nam-Gu, Pohang 790-784, South Korea.
J Phys Chem Lett. 2012 Nov 1;3(21):3210-5. doi: 10.1021/jz301453t. Epub 2012 Oct 19.
Understanding of electrochemical process in rechargeable Li-O2 battery has suffered from lack of proper analytical tool, especially related to the identification of chemical species and number of electrons involved in the discharge/recharge process. Here we present a simple and straightforward analytical method for simultaneously attaining chemical and quantified information of Li2O2 (discharge product) and byproducts using in situ XRD measurement. By real-time monitoring of solid-state Li2O2 peak area, the accurate efficiency of Li2O2 formation and the number of electrons can be evaluated during full discharge. Furthermore, by observation of sequential area change of Li2O2 peak during recharge, we found nonlinearity of Li2O2 decomposition rate for the first time in ether-based electrolyte.
由于缺乏合适的分析工具,尤其是与放电/充电过程中涉及的化学物种和电子数量的识别相关的工具,可充电锂氧电池中电化学过程的理解一直受到阻碍。在此,我们提出一种简单直接的分析方法,通过原位XRD测量同时获取Li₂O₂(放电产物)和副产物的化学及定量信息。通过实时监测固态Li₂O₂峰面积,可以在全放电过程中评估Li₂O₂形成的准确效率和电子数量。此外,通过观察充电过程中Li₂O₂峰面积的连续变化,我们首次在醚基电解质中发现了Li₂O₂分解速率的非线性。