Suppr超能文献

基于 RNA 的胶束:紫杉醇负载和递送的新平台。

RNA-based micelles: A novel platform for paclitaxel loading and delivery.

机构信息

Nanobiotechnology Center, Markey Cancer Center and Department of Pharmaceutical Sciences/College of Pharmacy, University of Kentucky, Lexington, KY 40536, United States.

Center for RNA Nanobiotechnology and Nanomedicine, Division of Pharmaceutics and Pharmaceutical Chemistry/College of Pharmacy, College of Medicine, Dorothy M. Davis Heart and Lung Research Institute and James Comprehensive Cancer Center, The Ohio State Universtiy, Columbus, OH 43210, United States.

出版信息

J Control Release. 2018 Apr 28;276:17-29. doi: 10.1016/j.jconrel.2018.02.014. Epub 2018 Feb 14.

Abstract

RNA can serve as powerful building blocks for bottom-up fabrication of nanostructures for biotechnological and biomedical applications. In addition to current self-assembly strategies utilizing base pairing, motif piling and tertiary interactions, we reported for the first time the formation of RNA based micellar nanoconstruct with a cholesterol molecule conjugated onto one helical end of a branched pRNA three-way junction (3WJ) motif. The resulting amphiphilic RNA micelles consist of a hydrophilic RNA head and a covalently linked hydrophobic lipid tail that can spontaneously assemble in aqueous solution via hydrophobic interaction. Taking advantage of pRNA 3WJ branched structure, the assembled RNA micelles are capable of escorting multiple functional modules. As a proof of concept for delivery for therapeutics, Paclitaxel was loaded into the RNA micelles with significantly improved water solubility. The successful construction of the drug loaded RNA micelles was confirmed and characterized by agarose gel electrophoresis, atomic force microscopy (AFM), dynamic light scattering (DLS), and fluorescence Nile Red encapsulation assay. The estimate critical micelle formation concentration ranges from 39 nM to 78 nM. The Paclitaxel loaded RNA micelles can internalize into cancer cells and inhibit their proliferation. Further studies showed that the Paclitaxel loaded RNA micelles induced cancer cell apoptosis in a Caspase-3 dependent manner but RNA micelles alone exhibited low cytotoxicity. Finally, the Paclitaxel loaded RNA micelles targeted to tumor in vivo without accumulation in healthy tissues and organs. There is also no or very low induction of pro-inflammatory response. Therefore, multivalence, cancer cell permeability, combined with controllable assembly, low or non toxic nature, and tumor targeting are all promising features that make our pRNA micelles a suitable platform for potential drug delivery.

摘要

RNA 可以作为构建生物技术和生物医学应用的纳米结构的强大构建块。除了当前利用碱基配对、基序堆积和三级相互作用的自组装策略外,我们还首次报道了胆固醇分子连接到分支 pRNA 三链结(3WJ)基序的一个螺旋末端,形成基于 RNA 的胶束纳米结构。所得的两亲性 RNA 胶束由亲水 RNA 头和共价连接的疏水性脂质尾组成,可通过疏水相互作用在水溶液中自发组装。利用 pRNA 3WJ 分支结构,组装的 RNA 胶束能够携带多个功能模块。作为递药的概念验证,紫杉醇被负载到 RNA 胶束中,其水溶性得到显著提高。通过琼脂糖凝胶电泳、原子力显微镜 (AFM)、动态光散射 (DLS) 和荧光尼罗红包封测定证实和表征了负载药物的 RNA 胶束的成功构建。估计临界胶束形成浓度范围为 39 nM 至 78 nM。负载紫杉醇的 RNA 胶束可以进入癌细胞并抑制其增殖。进一步的研究表明,负载紫杉醇的 RNA 胶束通过 Caspase-3 依赖性诱导癌细胞凋亡,而 RNA 胶束本身表现出低细胞毒性。最后,负载紫杉醇的 RNA 胶束在体内靶向肿瘤,而不会在健康组织和器官中积累,也不会或很少引起炎症反应。因此,多价性、癌细胞通透性、可控组装、低毒性或非毒性以及肿瘤靶向性都是很有前途的特征,使我们的 pRNA 胶束成为潜在药物递送的合适平台。

相似文献

1
RNA-based micelles: A novel platform for paclitaxel loading and delivery.
J Control Release. 2018 Apr 28;276:17-29. doi: 10.1016/j.jconrel.2018.02.014. Epub 2018 Feb 14.
2
Hydrophobically modified inulin as an amphiphilic carbohydrate polymer for micellar delivery of paclitaxel for intravenous route.
Int J Pharm. 2016 Mar 16;500(1-2):32-41. doi: 10.1016/j.ijpharm.2016.01.005. Epub 2016 Jan 11.
3
Redox-Sensitive Micelles Based on O,N-Hydroxyethyl Chitosan-Octylamine Conjugates for Triggered Intracellular Delivery of Paclitaxel.
Mol Pharm. 2016 Jun 6;13(6):1750-62. doi: 10.1021/acs.molpharmaceut.5b00696. Epub 2016 May 6.
4
Polymeric micelles with water-insoluble drug as hydrophobic moiety for drug delivery.
Biomacromolecules. 2011 Jun 13;12(6):2016-26. doi: 10.1021/bm200372s. Epub 2011 May 24.
6
Thermosensitive and biodegradable polymeric micelles for paclitaxel delivery.
J Control Release. 2005 Mar 21;103(2):341-53. doi: 10.1016/j.jconrel.2004.12.009.
8
PEG-derivatized octacosanol as micellar carrier for paclitaxel delivery.
Int J Pharm. 2016 Mar 16;500(1-2):345-59. doi: 10.1016/j.ijpharm.2016.01.030. Epub 2016 Jan 18.
10
Novel amphiphilic folic acid-cholesterol-chitosan micelles for paclitaxel delivery.
Oncotarget. 2017 Jan 10;8(2):3315-3326. doi: 10.18632/oncotarget.13757.

引用本文的文献

3
Targeting CHEK1: Ginsenosides-Rh2 and Cu2O@G-Rh2 nanoparticles in thyroid cancer.
Cell Biol Toxicol. 2025 Jan 14;41(1):30. doi: 10.1007/s10565-024-09961-7.
4
RNA Nanotechnology for Codelivering High-Payload Nucleoside Analogs to Cancer with a Synergetic Effect.
Mol Pharm. 2024 Nov 4;21(11):5690-5702. doi: 10.1021/acs.molpharmaceut.4c00674. Epub 2024 Oct 10.
5
Engineered extracellular vesicles for combinatorial TNBC therapy: SR-SIM-guided design achieves substantial drug dosage reduction.
Mol Ther. 2024 Dec 4;32(12):4467-4481. doi: 10.1016/j.ymthe.2024.09.034. Epub 2024 Oct 5.
6
Cells and cell derivatives as drug carriers for targeted delivery.
Med Drug Discov. 2019 Sep;3. doi: 10.1016/j.medidd.2020.100014. Epub 2020 Jan 25.
7
and Evaluation of the Pathology and Safety Aspects of Three- and Four-Way Junction RNA Nanoparticles.
Mol Pharm. 2024 Feb 5;21(2):718-728. doi: 10.1021/acs.molpharmaceut.3c00845. Epub 2024 Jan 12.
9
Application and prospects of nucleic acid nanomaterials in tumor therapy.
RSC Adv. 2023 Sep 4;13(37):26288-26301. doi: 10.1039/d3ra04081j. eCollection 2023 Aug 29.
10
Self-assembled nanoformulations of paclitaxel for enhanced cancer theranostics.
Acta Pharm Sin B. 2023 Aug;13(8):3252-3276. doi: 10.1016/j.apsb.2023.02.021. Epub 2023 Mar 5.

本文引用的文献

1
Size, Shape, and Sequence-Dependent Immunogenicity of RNA Nanoparticles.
Mol Ther Nucleic Acids. 2017 Dec 15;9:399-408. doi: 10.1016/j.omtn.2017.10.010. Epub 2017 Oct 17.
2
Nanoparticle orientation to control RNA loading and ligand display on extracellular vesicles for cancer regression.
Nat Nanotechnol. 2018 Jan;13(1):82-89. doi: 10.1038/s41565-017-0012-z. Epub 2017 Dec 11.
3
Hydrophobic Effect from Conjugated Chemicals or Drugs on In Vivo Biodistribution of RNA Nanoparticles.
Hum Gene Ther. 2018 Jan;29(1):77-86. doi: 10.1089/hum.2017.054. Epub 2017 Oct 12.
4
RNA Nanoparticle-Based Targeted Therapy for Glioblastoma through Inhibition of Oncogenic miR-21.
Mol Ther. 2017 Jul 5;25(7):1544-1555. doi: 10.1016/j.ymthe.2016.11.016. Epub 2017 Jan 18.
5
RNA nanoparticles harboring annexin A2 aptamer can target ovarian cancer for tumor-specific doxorubicin delivery.
Nanomedicine. 2017 Apr;13(3):1183-1193. doi: 10.1016/j.nano.2016.11.015. Epub 2016 Nov 25.
6
Fabrication of RNA 3D Nanoprisms for Loading and Protection of Small RNAs and Model Drugs.
Adv Mater. 2016 Dec;28(45):10079-10087. doi: 10.1002/adma.201603180. Epub 2016 Oct 19.
7
DNA micelles as nanoreactors: efficient DNA functionalization with hydrophobic organic molecules.
Chem Commun (Camb). 2016 Sep 18;52(72):10914-7. doi: 10.1039/c6cc04970b. Epub 2016 Aug 17.
8
Controllable Self-Assembly of RNA Tetrahedrons with Precise Shape and Size for Cancer Targeting.
Adv Mater. 2016 Sep;28(34):7501-7. doi: 10.1002/adma.201601976. Epub 2016 Jun 20.
9
Specific Delivery of MiRNA for High Efficient Inhibition of Prostate Cancer by RNA Nanotechnology.
Mol Ther. 2016 Aug;24(7):1267-77. doi: 10.1038/mt.2016.85. Epub 2016 Apr 29.
10

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验