Shenzhen Key Laboratory of Microbial Genetic Engineering, Shenzhen Key Laboratory of Marine Bioresource and Eco-environmental Science, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China; Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering Shenzhen University, Shenzhen 518060, China; Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, China.
Shenzhen Key Laboratory of Microbial Genetic Engineering, Shenzhen Key Laboratory of Marine Bioresource and Eco-environmental Science, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China.
Ecotoxicol Environ Saf. 2018 Jun 15;154:108-117. doi: 10.1016/j.ecoenv.2018.02.012. Epub 2018 Feb 22.
Nano-sized TiO (nTiO) exerts an oxidative effect on cells upon exposure to solar or UV irradiation and ecotoxicity of the nTiO is an urgent concern. Little information is available regarding the effect of TiO on cells under dark conditions. Metabolomics is a unique approach to the discovery of biomarkers of nTiO cytotoxicity, and leads to the identification of perturbed metabolic pathways and the mechanism underlying nTiO toxicity. In the present study, gas chromatography mass spectrometry (GC/MS)-based metabolomics was performed to investigate the effect of nTiO on sensitive cells (P. polycephalum macroplasmodium) under dark conditions. According to the multivariate pattern recognition analysis, at least 60 potential metabolic biomarkers related to sugar metabolism, amino acid metabolism, nucleotide metabolism, polyamine biosynthesis, and secondary metabolites pathways were significantly perturbed by nTiO. Notably, many metabolic biomarkers and pathways were related to anti-oxidant mechanisms in the living organism, suggesting that nTiO may induce oxidative stress, even under dark conditions. This speculation was further validated by the biochemical levels of reactive oxygen species (ROS), 8-hydroxy-2-deoxyguanosine (8-OHdG), and total soluble phenols (TSP). We inferred that the oxidative stress might be related to nTiO-induced imbalance of cellular ROS. To the best of our knowledge, the present study is the first to investigate the nTiO-induced metabolic perturbations in slime mold, provide a new perspective of the mechanism underlying nTiO toxicity under dark conditions, and show that metabolomics can be employed as a rapid, reliable and powerful tool to investigate the interaction among organisms, the environment, and nanomaterials.
纳米级 TiO(nTiO)在暴露于阳光或紫外线照射下会对细胞产生氧化作用,因此 nTiO 的生态毒性是一个亟待关注的问题。目前关于 TiO 在黑暗条件下对细胞的影响的信息很少。代谢组学是发现 nTiO 细胞毒性生物标志物的独特方法,可鉴定出代谢途径受到干扰的生物标志物,并揭示 nTiO 毒性的潜在机制。在本研究中,采用基于气相色谱-质谱联用(GC/MS)的代谢组学方法研究了 nTiO 在黑暗条件下对敏感细胞(P. polycephalum 大变形体)的影响。根据多元模式识别分析,至少有 60 种与糖代谢、氨基酸代谢、核苷酸代谢、多胺生物合成和次生代谢途径相关的潜在代谢生物标志物受到 nTiO 的显著干扰。值得注意的是,许多代谢生物标志物和途径与生物体的抗氧化机制有关,这表明 nTiO 即使在黑暗条件下也可能诱导氧化应激。这一推测通过活性氧(ROS)、8-羟基-2-脱氧鸟苷(8-OHdG)和总可溶性酚(TSP)的生化水平进一步得到验证。我们推断,氧化应激可能与 nTiO 诱导的细胞内 ROS 失衡有关。据我们所知,本研究首次在粘菌中研究了 nTiO 引起的代谢紊乱,为黑暗条件下 nTiO 毒性的潜在机制提供了新的视角,并表明代谢组学可以作为一种快速、可靠和强大的工具,用于研究生物体、环境和纳米材料之间的相互作用。