Suppr超能文献

与正常细胞相比,细胞外ATP在甲状腺乳头状癌细胞表面的代谢方式存在差异。

Extracellular ATP is Differentially Metabolized on Papillary Thyroid Carcinoma Cells Surface in Comparison to Normal Cells.

作者信息

Bertoni Ana Paula Santin, de Campos Rafael Paschoal, Tsao Marisa, Braganhol Elizandra, Furlanetto Tania Weber, Wink Márcia Rosângela

机构信息

Departamento de Ciências Básicas da Saúde and Laboratório de Biologia Celular, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Rua Sarmento Leite, 245, Prédio III, Sala 613, Porto Alegre, RS, CEP 90050-170, Brazil.

Departamento de Farmacociências, Universidade Federal de Ciências da Saúde de Porto Alegre, Rua Sarmento Leite, 245, Prédio Principal, Sala 305, Porto Alegre, RS, CEP 90050-170, Brazil.

出版信息

Cancer Microenviron. 2018 Jun;11(1):61-70. doi: 10.1007/s12307-018-0206-4. Epub 2018 Feb 17.

Abstract

The incidence of differentiated thyroid cancer has been increasing. Nevertheless, its molecular mechanisms are not well understood. In recent years, extracellular nucleotides and nucleosides have emerged as important modulators of tumor microenvironment. Extracellular ATP is mainly hydrolyzed by NTPDase1/CD39 and NTPDase2/CD39L1, generating AMP, which is hydrolyzed by ecto-5'-nucleotidase (CD73) to adenosine, a possible promoter of tumor growth and metastasis. There are no studies evaluating the expression and functionality of these ectonucleotidases on normal or tumor-derived thyroid cells. Thus, we investigated the ability of thyroid cancer cells to hydrolyze extracellular ATP generating adenosine, and the expression of ecto-enzymes, as compared to normal cells. We found that normal thyroid derived cells presented a higher ability to hydrolyze ATP and higher mRNA levels for ENTDP1-2, when compared to papillary thyroid carcinoma (PTC) derived cells, which had a higher ability to hydrolyze AMP and expressed CD73 mRNA and protein at higher levels. In addition, adenosine induced an increase in proliferation and migration in PTC derived cells, whose effect was blocked by APCP, a non-hydrolysable ADP analogue, which is an inhibitor of CD73. Taken together, these results showed that thyroid follicular cells have a functional purinergic signaling. The higher expression of CD73 in PTC derived cells might favor the accumulation of extracellular adenosine in the tumor microenvironment, which could promote tumor progression. Therefore, as already shown for other tumors, the purinergic signaling should be considered a potential target for thyroid cancer management and treatment.

摘要

分化型甲状腺癌的发病率一直在上升。然而,其分子机制尚未完全明确。近年来,细胞外核苷酸和核苷已成为肿瘤微环境的重要调节因子。细胞外ATP主要由NTPDase1/CD39和NTPDase2/CD39L1水解,生成AMP,AMP再由胞外5'-核苷酸酶(CD73)水解为腺苷,腺苷可能是肿瘤生长和转移的促进剂。目前尚无研究评估这些外切核苷酸酶在正常或肿瘤来源的甲状腺细胞上的表达和功能。因此,我们研究了甲状腺癌细胞水解细胞外ATP生成腺苷的能力,以及与正常细胞相比外切酶的表达情况。我们发现,与甲状腺乳头状癌(PTC)来源的细胞相比,正常甲状腺来源的细胞具有更高的ATP水解能力和ENTDP1-2的mRNA水平,而PTC来源的细胞具有更高的AMP水解能力,且CD73 mRNA和蛋白的表达水平更高。此外,腺苷可诱导PTC来源的细胞增殖和迁移增加,其作用被APCP(一种不可水解的ADP类似物,是CD73的抑制剂)阻断。综上所述,这些结果表明甲状腺滤泡细胞具有功能性嘌呤能信号传导。PTC来源的细胞中CD73的高表达可能有利于肿瘤微环境中细胞外腺苷的积累,从而促进肿瘤进展。因此,正如其他肿瘤所显示的那样,嘌呤能信号传导应被视为甲状腺癌管理和治疗的潜在靶点。

相似文献

1
Extracellular ATP is Differentially Metabolized on Papillary Thyroid Carcinoma Cells Surface in Comparison to Normal Cells.
Cancer Microenviron. 2018 Jun;11(1):61-70. doi: 10.1007/s12307-018-0206-4. Epub 2018 Feb 17.
4
Epidermal melanocytes metabolize extracellular nucleotides by purinergic enzymes.
Biochem Cell Biol. 2023 Jun 1;101(3):259-266. doi: 10.1139/bcb-2022-0058. Epub 2023 Jan 19.
5
Ecto-5'-nucleotidase/CD73 inhibition by quercetin in the human U138MG glioma cell line.
Biochim Biophys Acta. 2007 Sep;1770(9):1352-9. doi: 10.1016/j.bbagen.2007.06.003. Epub 2007 Jun 16.
6
Comparative hydrolysis of P2 receptor agonists by NTPDases 1, 2, 3 and 8.
Purinergic Signal. 2005 Jun;1(2):193-204. doi: 10.1007/s11302-005-6217-x. Epub 2005 Mar 17.
8
Activity and expression of ecto-5'-nucleotidase/CD73 are increased by thyroid hormones in vascular smooth muscle cells.
Mol Cell Biochem. 2006 Sep;289(1-2):65-72. doi: 10.1007/s11010-006-9148-0. Epub 2006 May 23.
9
Purinergic Signaling in Glioma Progression.
Adv Exp Med Biol. 2020;1202:87-108. doi: 10.1007/978-3-030-30651-9_5.
10
The adenosine generating enzymes CD39/CD73 control microglial processes ramification in the mouse brain.
PLoS One. 2017 Apr 4;12(4):e0175012. doi: 10.1371/journal.pone.0175012. eCollection 2017.

引用本文的文献

1
CD73 mitigates ZEB1 expression in papillary thyroid carcinoma.
Cell Commun Signal. 2024 Feb 22;22(1):145. doi: 10.1186/s12964-024-01522-z.
3
Review immune response of targeting CD39 in cancer.
Biomark Res. 2023 Jun 7;11(1):63. doi: 10.1186/s40364-023-00500-w.
4
ATPergic signaling disruption in human sepsis as a potential source of biomarkers for clinical use.
Clin Exp Med. 2023 Nov;23(7):3651-3662. doi: 10.1007/s10238-023-01045-w. Epub 2023 Mar 21.
5
Purinergic signaling in thyroid disease.
Purinergic Signal. 2023 Mar;19(1):221-227. doi: 10.1007/s11302-022-09858-2. Epub 2022 Mar 26.
7
Immune landscape and a promising immune prognostic model associated with TP53 in early-stage lung adenocarcinoma.
Cancer Med. 2021 Feb;10(3):806-823. doi: 10.1002/cam4.3655. Epub 2020 Dec 12.
8
Imatinib mesylate affects extracellular ATP catabolism and expression of NTPDases in a chronic myeloid leukemia cell line.
Purinergic Signal. 2020 Mar;16(1):29-40. doi: 10.1007/s11302-019-09686-x. Epub 2020 Jan 18.
9
CD73 Downregulation Decreases In Vitro and In Vivo Glioblastoma Growth.
Mol Neurobiol. 2019 May;56(5):3260-3279. doi: 10.1007/s12035-018-1240-4. Epub 2018 Aug 16.

本文引用的文献

1
Prognositic value of CD73-adenosinergic pathway in solid tumor: A meta-analysis and systematic review.
Oncotarget. 2017 Apr 6;8(34):57327-57336. doi: 10.18632/oncotarget.16905. eCollection 2017 Aug 22.
2
Extracellular Nucleotide Hydrolysis in Dermal and Limbal Mesenchymal Stem Cells: A Source of Adenosine Production.
J Cell Biochem. 2017 Aug;118(8):2430-2442. doi: 10.1002/jcb.25909. Epub 2017 Apr 25.
3
Extracellular purines, purinergic receptors and tumor growth.
Oncogene. 2017 Jan 19;36(3):293-303. doi: 10.1038/onc.2016.206. Epub 2016 Jun 20.
4
Unlocking the Potential of Purinergic Signaling in Transplantation.
Am J Transplant. 2016 Oct;16(10):2781-2794. doi: 10.1111/ajt.13801. Epub 2016 Apr 28.
5
Risk Stratification in Differentiated Thyroid Cancer: An Ongoing Process.
Rambam Maimonides Med J. 2016 Jan 28;7(1):e0003. doi: 10.5041/RMMJ.10230.
6
New horizons in tumor microenvironment biology: challenges and opportunities.
BMC Med. 2015 Mar 5;13:45. doi: 10.1186/s12916-015-0278-7.
7
The presence of adenosine A2a receptor in thyrocytes and its involvement in Graves' IgG-induced VEGF expression.
Endocrinology. 2013 Dec;154(12):4927-38. doi: 10.1210/en.2012-2258. Epub 2013 Sep 30.
8
Cellular function and molecular structure of ecto-nucleotidases.
Purinergic Signal. 2012 Sep;8(3):437-502. doi: 10.1007/s11302-012-9309-4. Epub 2012 May 4.
9
Characterization of ATP-induced cell death in the GL261 mouse glioma.
J Cell Biochem. 2010 Apr 1;109(5):983-91. doi: 10.1002/jcb.22478.
10
Selective NTPDase2 expression modulates in vivo rat glioma growth.
Cancer Sci. 2009 Aug;100(8):1434-42. doi: 10.1111/j.1349-7006.2009.01219.x. Epub 2009 May 18.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验