Lovričević Neda, Pečarić Ðilda, Pečarić Josip
1Faculty of Civil Engineering, Architecture and Geodesy, University of Split, Split, Croatia.
Catholic University of Croatia, Zagreb, Croatia.
J Inequal Appl. 2018;2018(1):36. doi: 10.1186/s13660-018-1625-y. Epub 2018 Feb 8.
Motivated by the method of interpolating inequalities that makes use of the improved Jensen-type inequalities, in this paper we integrate this approach with the well known Zipf-Mandelbrot law applied to various types of -divergences and distances, such are Kullback-Leibler divergence, Hellinger distance, Bhattacharyya distance (via coefficient), [Formula: see text]-divergence, total variation distance and triangular discrimination. Addressing these applications, we firstly deduce general results of the type for the Csiszár divergence functional from which the listed divergences originate. When presenting the analyzed inequalities for the Zipf-Mandelbrot law, we accentuate its special form, the Zipf law with its specific role in linguistics. We introduce this aspect through the Zipfian word distribution associated to the English and Russian languages, using the obtained bounds for the Kullback-Leibler divergence.
受利用改进的詹森型不等式的插值不等式方法的启发,在本文中,我们将这种方法与应用于各种类型的散度和距离的著名齐普夫 - 曼德布洛特定律相结合,这些散度和距离包括库尔贝克 - 莱布勒散度、赫林格距离、 Bhattacharyya 距离(通过系数)、 - 散度、总变差距离和三角判别。针对这些应用,我们首先推导了Csiszár散度泛函类型的一般结果,所列散度均源于此。在展示齐普夫 - 曼德布洛特定律的分析不等式时,我们强调了它的特殊形式,即齐普夫定律及其在语言学中的特定作用。我们通过与英语和俄语相关的齐普夫词分布来介绍这一方面,利用获得的库尔贝克 - 莱布勒散度的界。