Bussandri Diego G, Osán Tristán M
Instituto de Física La Plata (IFLP), Consejo Nacional de Investigaciones Científicas y Técnicas de la República Argentina (CONICET), Diagonal 113 e/63 y 64, La Plata B1900, Argentina.
Instituto de Física Enrique Gaviola (IFEG), Consejo Nacional de Investigaciones Científicas y Técnicas de la República Argentina (CONICET), Av. Medina Allende s/n, Córdoba X5000HUA, Argentina.
Entropy (Basel). 2023 Jun 8;25(6):912. doi: 10.3390/e25060912.
We introduce a new family of quantum distances based on symmetric Csiszár divergences, a class of distinguishability measures that encompass the main dissimilarity measures between probability distributions. We prove that these quantum distances can be obtained by optimizing over a set of quantum measurements followed by a purification process. Specifically, we address in the first place the case of distinguishing pure quantum states, solving an optimization of the symmetric Csiszár divergences over von Neumann measurements. In the second place, by making use of the concept of purification of quantum states, we arrive at a new set of distinguishability measures, which we call . In addition, as it has been demonstrated that a purification process can be physically implemented, the proposed distinguishability measures for quantum states could be endowed with an operational interpretation. Finally, by taking advantage of a well-known result for classical Csiszár divergences, we show how to build quantum Csiszár true distances. Thus, our main contribution is the development and analysis of a method for obtaining quantum distances satisfying the triangle inequality in the space of quantum states for Hilbert spaces of arbitrary dimension.
我们基于对称的Csiszár散度引入了一个新的量子距离族,这是一类区分性度量,涵盖了概率分布之间的主要差异度量。我们证明,这些量子距离可以通过在一组量子测量上进行优化,然后进行纯化过程来获得。具体而言,我们首先处理区分纯量子态的情况,解决了在冯·诺依曼测量上对对称Csiszár散度的优化问题。其次,通过利用量子态纯化的概念,我们得到了一组新的区分性度量,我们将其称为 。此外,由于已经证明纯化过程可以物理实现,所提出的量子态区分性度量可以赋予操作解释。最后,通过利用经典Csiszár散度的一个著名结果,我们展示了如何构建量子Csiszár真距离。因此,我们的主要贡献是开发和分析了一种在任意维度希尔伯特空间的量子态空间中获得满足三角不等式的量子距离的方法。