Suppr超能文献

用于骨质疏松症筛查的桌面式持续模式、无液氦、1.5-T/90-mm 镁硼“指状”磁共振成像磁体:两种设计方案。

A Tabletop Persistent-Mode, Liquid-Helium-Free, 1.5-T/90-mm MgB "Finger" MRI Magnet for Osteoporosis Screening: Two Design Options.

作者信息

Park Dongkeun, Bascuñán Juan, Michael Philip C, Iwasa Yukikazu

机构信息

Francis Bitter Magnet Laboratory (FBML) / Plasma Science and Fusion Center (PSFC), Massachusetts Institute of Technology, Cambridge, MA 02139 USA.

出版信息

IEEE Trans Appl Supercond. 2018 Apr;28(3). doi: 10.1109/TASC.2017.2773830. Epub 2017 Nov 15.

Abstract

In this paper we present two design options for a tabletop liquid-helium-free, persistent-mode 1.5-T/90-mm MgB "finger" MRI magnet for osteoporosis screening. Both designs, one with and the other without an iron yoke, satisfy the following criteria: 1) 1.5-T center field with a 90-mm room-temperature bore for a finger to be placed at the magnet center; 2) spatial field homogeneity of <5 ppm over a 20-mm diameter of spherical volume (DSV); 3) persistent-mode operation with temporal stability of <0.1 ppm/hr; 4) liquid-helium-free operation; 5) 5-gauss fringe field radius of <50 cm from the magnet center; and 6) small and light enough for placement on an exam table. Although the magnet is designed to operate nominally at 10 K, maintained by a cryocooler, it has a 5-K temperature margin to keep its 1.5-T persistent field up to 15 K. The magnet will be immersed in a volume of solid nitrogen (SN) that provides additional thermal mass when the cryocooler is switched off to provide a vibration-free measurement environment. The SN enables the magnet to maintain its persistent field over a period of time sufficient for quiescent measurement, while still limiting the magnet operating temperature to ≤15 K. We discuss first pros and cons of each design, and then further studies of our proposed MgB finger MRI magnet.

摘要

在本文中,我们展示了两种用于骨质疏松症筛查的桌面式无液氦、持续模式1.5-T/90-mm MgB“手指”MRI磁体的设计方案。两种设计,一种有铁轭,另一种没有铁轭,均满足以下标准:1)中心场强为1.5 T,室温孔径为90 mm,以便手指可放置在磁体中心;2)在直径20 mm的球形体积(DSV)内空间场均匀性<5 ppm;3)持续模式运行,时间稳定性<0.1 ppm/hr;4)无液氦运行;5)距磁体中心5高斯边缘场半径<50 cm;6)体积小且重量轻,便于放置在检查台上。尽管该磁体设计为在由低温冷却器维持的10 K标称温度下运行,但它有5 K的温度余量,可在高达15 K的温度下保持其1.5-T持续场。磁体将浸没在固态氮(SN)中,当低温冷却器关闭时,固态氮可提供额外的热质量,以提供无振动的测量环境。固态氮使磁体能够在足够长的时间内维持其持续场,以进行静态测量,同时仍将磁体工作温度限制在≤15 K。我们首先讨论每种设计的优缺点,然后对我们提出的MgB手指MRI磁体进行进一步研究。

相似文献

本文引用的文献

2
MgB for MRI Magnets: Test Coils and Superconducting Joints Results.用于MRI磁体的MgB:测试线圈和超导接头的结果。
IEEE Trans Appl Supercond. 2012 Jun;22(3). doi: 10.1109/TASC.2012.2185472. Epub 2012 Mar 5.
5
Conductors for commercial MRI magnets beyond NbTi: requirements and challenges.用于NbTi之外的商用MRI磁体的导体:要求与挑战。
Supercond Sci Technol. 2017 Jan;30(1):014007. doi: 10.1088/0953-2048/30/1/014007. Epub 2016 Nov 16.
7
A Superconducting Joint Technique for MgB(2) Round Wires.一种用于MgB₂圆线的超导连接技术。
IEEE Trans Appl Supercond. 2009 Jun;19(3):2261-2264. doi: 10.1109/TASC.2009.2019063.
9

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验