Suppr超能文献

微循环网络中血细胞比容分布的建模:相分离模型的定量评估。

Modeling the hematocrit distribution in microcirculatory networks: A quantitative evaluation of a phase separation model.

作者信息

Rasmussen Peter M, Secomb Timothy W, Pries Axel R

机构信息

Department of Clinical Medicine, Center of Functionally Integrative Neuroscience, Aarhus University Hospital, Aarhus, Denmark.

Department of Physiology, University of Arizona, Tucson, AZ, USA.

出版信息

Microcirculation. 2018 Apr;25(3):e12445. doi: 10.1111/micc.12445.

Abstract

OBJECTIVE

Theoretical models are essential tools for studying microcirculatory function. Recently, the validity of a well-established phase separation model was questioned and it was claimed that it produces problematically low hematocrit predictions and lack of red cells in small diameter vessels. We conducted a quantitative evaluation of this phase separation model to establish common ground for future research.

METHODS

Model predictions were validated against a comprehensive database with measurements from 4 mesenteric networks. A Bayesian data analysis framework was used to integrate measurements and network model simulations into a combined analysis and to model uncertainties related to network boundary conditions as well as phase separation model parameters. The model evaluation was conducted within a cross-validation scheme.

RESULTS

Unlike the recently reported results, our analysis demonstrated good correspondence in global characteristics between measurements and predictions. In particular, predicted hematocrits for vessels with small diameters were consistent with measurements. Incorporating phase separation model parameter uncertainties further reduced the hematocrit validation error by 17% and led to the absence of red-cell-free segments. Corresponding model parameters are presented as alternatives to standard parameters.

CONCLUSIONS

Consistent with earlier studies, our quantitative model evaluation supports the continued use of the established phase separation model.

摘要

目的

理论模型是研究微循环功能的重要工具。最近,一个成熟的相分离模型的有效性受到质疑,有人声称该模型会产生低得离谱的血细胞比容预测结果,并且在小直径血管中缺乏红细胞。我们对这个相分离模型进行了定量评估,为未来的研究奠定共同基础。

方法

根据一个包含4个肠系膜网络测量数据的综合数据库对模型预测结果进行验证。使用贝叶斯数据分析框架将测量数据和网络模型模拟整合到一个联合分析中,并对与网络边界条件以及相分离模型参数相关的不确定性进行建模。模型评估是在交叉验证方案内进行的。

结果

与最近报道的结果不同,我们的分析表明测量结果与预测结果在整体特征上具有良好的一致性。特别是,小直径血管的预测血细胞比容与测量结果一致。纳入相分离模型参数的不确定性进一步将血细胞比容验证误差降低了17%,并导致不存在无红细胞段。给出了相应的模型参数作为标准参数的替代方案。

结论

与早期研究一致,我们的定量模型评估支持继续使用已建立的相分离模型。

相似文献

2
Blood flow in microvascular networks. Experiments and simulation.
Circ Res. 1990 Oct;67(4):826-34. doi: 10.1161/01.res.67.4.826.
4
Redistribution of red blood cell flow in microcirculatory networks by hemodilution.
Circ Res. 1992 Jun;70(6):1113-21. doi: 10.1161/01.res.70.6.1113.
5
Resistance to blood flow in microvessels in vivo.
Circ Res. 1994 Nov;75(5):904-15. doi: 10.1161/01.res.75.5.904.
6
Quantification of red blood cell deformation at high-hematocrit blood flow in microvessels.
J Biomech. 2012 Oct 11;45(15):2684-9. doi: 10.1016/j.jbiomech.2012.08.026. Epub 2012 Sep 13.
7
A two-fluid model for hematocrit distribution in microvascular networks.
Med Phys. 1989 May-Jun;16(3):319-25. doi: 10.1118/1.596341.
8
Microvascular blood flow resistance: Role of red blood cell migration and dispersion.
Microvasc Res. 2015 May;99:57-66. doi: 10.1016/j.mvr.2015.02.006. Epub 2015 Feb 25.
9
Inversion of hematocrit partition at microfluidic bifurcations.
Microvasc Res. 2016 May;105:40-6. doi: 10.1016/j.mvr.2015.12.009. Epub 2015 Dec 30.
10
Generalization of the Fahraeus principle for microvessel networks.
Am J Physiol. 1986 Dec;251(6 Pt 2):H1324-32. doi: 10.1152/ajpheart.1986.251.6.H1324.

引用本文的文献

1
Brief disruptions in capillary flow result in rapid onset of hypoxia.
Neurophotonics. 2025 Jun;12(Suppl 2):S22803. doi: 10.1117/1.NPh.12.S2.S22803. Epub 2025 Aug 12.
2
The role of leptomeningeal collaterals in redistributing blood flow during stroke.
PLoS Comput Biol. 2023 Oct 23;19(10):e1011496. doi: 10.1371/journal.pcbi.1011496. eCollection 2023 Oct.
3
Modeling Reactive Hyperemia to Better Understand and Assess Microvascular Function: A Review of Techniques.
Ann Biomed Eng. 2023 Mar;51(3):479-492. doi: 10.1007/s10439-022-03134-5. Epub 2023 Jan 28.
4
Predicting Vessel Diameter Changes to Up-Regulate Biphasic Blood Flow During Activation in Realistic Microvascular Networks.
Front Physiol. 2020 Oct 16;11:566303. doi: 10.3389/fphys.2020.566303. eCollection 2020.
5
investigations of red blood cell phase separation in a complex microchannel network.
Biomicrofluidics. 2020 Jan 2;14(1):014101. doi: 10.1063/1.5127840. eCollection 2020 Jan.

本文引用的文献

2
Going beyond 20 μm-sized channels for studying red blood cell phase separation in microfluidic bifurcations.
Biomicrofluidics. 2016 May 12;10(3):034103. doi: 10.1063/1.4948955. eCollection 2016 May.
3
Corrigendum.
Microcirculation. 2015 Jul;22(5):434. doi: 10.1111/micc.12214.
5
Structure-based algorithms for microvessel classification.
Microcirculation. 2015 Feb;22(2):99-108. doi: 10.1111/micc.12181.
6
Hematocrit distribution and tissue oxygenation in large microcirculatory networks.
Microcirculation. 2015 Jan;22(1):1-18. doi: 10.1111/micc.12156.
8
Cerebral blood flow modeling in primate cortex.
J Cereb Blood Flow Metab. 2010 Nov;30(11):1860-73. doi: 10.1038/jcbfm.2010.105. Epub 2010 Jul 21.
9
The role of theoretical modeling in microcirculation research.
Microcirculation. 2008 Nov;15(8):693-8. doi: 10.1080/10739680802349734.
10
Theoretical modeling in hemodynamics of microcirculation.
Microcirculation. 2008 Nov;15(8):699-714. doi: 10.1080/10739680802229589.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验