Suppr超能文献

基于结构的微血管分类算法。

Structure-based algorithms for microvessel classification.

作者信息

Smith Amy F, Secomb Timothy W, Pries Axel R, Smith Nicolas P, Shipley Rebecca J

机构信息

Oxford Centre for Collaborative Applied Mathematics, Mathematical Institute, University of Oxford, Oxford, UK; Department of Physiology, University of Arizona, Tucson, Arizona, USA.

出版信息

Microcirculation. 2015 Feb;22(2):99-108. doi: 10.1111/micc.12181.

Abstract

OBJECTIVE

Recent developments in high-resolution imaging techniques have enabled digital reconstruction of three-dimensional sections of microvascular networks down to the capillary scale. To better interpret these large data sets, our goal is to distinguish branching trees of arterioles and venules from capillaries.

METHODS

Two novel algorithms are presented for classifying vessels in microvascular anatomical data sets without requiring flow information. The algorithms are compared with a classification based on observed flow directions (considered the gold standard), and with an existing resistance-based method that relies only on structural data.

RESULTS

The first algorithm, developed for networks with one arteriolar and one venular tree, performs well in identifying arterioles and venules and is robust to parameter changes, but incorrectly labels a significant number of capillaries as arterioles or venules. The second algorithm, developed for networks with multiple inlets and outlets, correctly identifies more arterioles and venules, but is more sensitive to parameter changes.

CONCLUSIONS

The algorithms presented here can be used to classify microvessels in large microvascular data sets lacking flow information. This provides a basis for analyzing the distinct geometrical properties and modelling the functional behavior of arterioles, capillaries, and venules.

摘要

目的

高分辨率成像技术的最新进展使得能够对微血管网络直至毛细血管尺度的三维切片进行数字重建。为了更好地解读这些庞大的数据集,我们的目标是区分小动脉和小静脉的分支树与毛细血管。

方法

提出了两种新颖的算法,用于在无需血流信息的情况下对微血管解剖数据集中的血管进行分类。将这些算法与基于观察到的血流方向的分类方法(视为金标准)以及仅依赖结构数据的现有基于阻力的方法进行比较。

结果

第一种算法是为具有一个小动脉树和一个小静脉树的网络开发的,在识别小动脉和小静脉方面表现良好,并且对参数变化具有鲁棒性,但会将大量毛细血管错误地标记为小动脉或小静脉。第二种算法是为具有多个入口和出口的网络开发的,能正确识别更多的小动脉和小静脉,但对参数变化更敏感。

结论

本文提出的算法可用于对缺乏血流信息的大型微血管数据集中的微血管进行分类。这为分析小动脉、毛细血管和小静脉独特的几何特性以及模拟其功能行为提供了基础。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9090/5024023/80680c3b03aa/MICC-22-99-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验