Suppr超能文献

爱尔兰共和国家庭院外心脏骤停:地区特征能否识别高危社区?

Out-of-hospital cardiac arrest in the home: Can area characteristics identify at-risk communities in the Republic of Ireland?

机构信息

School of Medicine, National University of Ireland Galway, Galway, Ireland.

Public Health and Primary Care, Trinity College, Dublin, Ireland.

出版信息

Int J Health Geogr. 2018 Feb 20;17(1):6. doi: 10.1186/s12942-018-0126-z.

Abstract

BACKGROUND

Internationally, the majority of out-of-hospital cardiac arrests where resuscitation is attempted (OHCAs) occur in private residential locations i.e. at home. The prospect of survival for this patient group is universally dismal. Understanding of the area-level factors that affect the incidence of OHCA at home may help national health planners when implementing community resuscitation training and services.

METHODS

We performed spatial smoothing using Bayesian conditional autoregression on case data from the Irish OHCA register. We further corrected for correlated findings using area level variables extracted and constructed for national census data.

RESULTS

We found that increasing deprivation was associated with increased case incidence. The methodology used also enabled us to identify specific areas with higher than expected case incidence.

CONCLUSIONS

Our study demonstrates novel use of Bayesian conditional autoregression in quantifying area level risk of a health event with high mortality across an entire country with a diverse settlement pattern. It adds to the evidence that the likelihood of OHCA resuscitation events is associated with greater deprivation and suggests that area deprivation should be considered when planning resuscitation services. Finally, our study demonstrates the utility of Bayesian conditional autoregression as a methodological approach that could be applied in any country using registry data and area level census data.

摘要

背景

在国际上,大多数尝试复苏的院外心脏骤停(OHCAs)发生在私人住宅场所,即家中。这群患者的生存前景普遍黯淡。了解影响家庭 OHCA 发病率的区域因素可能有助于国家卫生规划者在实施社区复苏培训和服务时做出决策。

方法

我们使用爱尔兰 OHCA 登记处的病例数据进行贝叶斯条件自回归空间平滑处理。我们进一步使用从国家人口普查数据中提取和构建的区域水平变量对相关发现进行了校正。

结果

我们发现,贫困程度的增加与病例发病率的增加有关。所使用的方法还使我们能够识别出某些特定区域的病例发病率高于预期。

结论

我们的研究展示了贝叶斯条件自回归在量化整个国家具有高死亡率的健康事件的区域风险方面的新颖应用,该国家具有多样化的居住模式。这一发现进一步证实了 OHCA 复苏事件的可能性与更高的贫困程度有关,并表明在规划复苏服务时应考虑区域贫困程度。最后,我们的研究展示了贝叶斯条件自回归作为一种方法学方法的实用性,该方法可以应用于任何使用登记数据和区域水平人口普查数据的国家。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2354/5819205/d06adaf27339/12942_2018_126_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验