Departament d'Estadística i Investigació Operativa, Facultat de Matemátiques, Universitat de València, C/Dr Moliner 50, 46100, Burjassot, Valencia, Spain.
Epidemiological Surveillance, Health Office of Department of Santander, Cl. 45 11-52, Bucaramanga, 680001, Colombia.
Int J Health Geogr. 2017 Aug 15;16(1):31. doi: 10.1186/s12942-017-0104-x.
Dengue is a high incidence arboviral disease in tropical countries around the world. Colombia is an endemic country due to the favourable environmental conditions for vector survival and spread. Dengue surveillance in Colombia is based in passive notification of cases, supporting monitoring, prediction, risk factor identification and intervention measures. Even though the surveillance network works adequately, disease mapping techniques currently developed and employed for many health problems are not widely applied. We select the Colombian city of Bucaramanga to apply Bayesian areal disease mapping models, testing the challenges and difficulties of the approach.
We estimated the relative risk of dengue disease by census section (a geographical unit composed approximately by 1-20 city blocks) for the period January 2008 to December 2015. We included the covariates normalized difference vegetation index (NDVI) and land surface temperature (LST), obtained by satellite images. We fitted Bayesian areal models at the complete period and annual aggregation time scales for 2008-2015, with fixed and space-varying coefficients for the covariates, using Markov Chain Monte Carlo simulations. In addition, we used Cohen's Kappa agreement measures to compare the risk from year to year, and from every year to the complete period aggregation.
We found the NDVI providing more information than LST for estimating relative risk of dengue, although their effects were small. NDVI was directly associated to high relative risk of dengue. Risk maps of dengue were produced from the estimates obtained by the modeling process. The year to year risk agreement by census section was sligth to fair.
The study provides an example of implementation of relative risk estimation using Bayesian models for disease mapping at small spatial scale with covariates. We relate satellite data to dengue disease, using an areal data approach, which is not commonly found in the literature. The main difficulty of the study was to find quality data for generating expected values as input for the models. We remark the importance of creating population registry at small spatial scale, which is not only relevant for the risk estimation of dengue but also important to the surveillance of all notifiable diseases.
登革热是一种在世界范围内热带国家发病率较高的虫媒病毒病。哥伦比亚由于有利于媒介生存和传播的环境条件,是一个地方性流行国家。哥伦比亚的登革热监测基于对病例的被动报告,支持监测、预测、危险因素识别和干预措施。尽管监测网络运行良好,但目前为许多健康问题开发和采用的疾病制图技术并未得到广泛应用。我们选择哥伦比亚的布卡拉曼加市应用贝叶斯区域疾病制图模型,以检验该方法的挑战和困难。
我们根据人口普查区(由大约 1-20 个城市街区组成的地理单元)估计了 2008 年 1 月至 2015 年 12 月期间登革热疾病的相对风险。我们纳入了由卫星图像获得的归一化差异植被指数(NDVI)和地表温度(LST)作为协变量。我们在完整时期和 2008-2015 年的年度聚合时间尺度上拟合了贝叶斯区域模型,协变量的固定和空间变化系数,使用马尔可夫链蒙特卡罗模拟。此外,我们使用 Cohen's Kappa 一致性度量来比较每年和每年与完整时期聚合的风险。
我们发现,尽管 NDVI 和 LST 的影响较小,但 NDVI 为估计登革热的相对风险提供了更多信息。NDVI 与登革热的高相对风险直接相关。从建模过程中获得的估计值制作了登革热风险图。普查区的逐年风险一致性为轻度到中度。
本研究提供了一个在小空间尺度上使用贝叶斯模型进行疾病制图并纳入协变量的相对风险估计的实施示例。我们使用区域数据方法将卫星数据与登革热疾病联系起来,这在文献中并不常见。研究的主要困难是找到高质量的数据来生成模型的预期值作为输入。我们指出在小空间尺度上创建人口登记的重要性,这不仅对登革热的风险估计很重要,而且对所有法定疾病的监测也很重要。