Tasbihi Minoo, Acharjya Amitava, Thomas Arne, Reli Martin, AmbroŽová Nela, Kočcí Kamila, Schomäcker Reinhard
Department of Chemistry, Technical University Berlin, 10623 Berlin, Germany.
Institute of Chemistry: Functional Materials, Technische Universität Berlin, 10623 Berlin, Germany.
J Nanosci Nanotechnol. 2018 Aug 1;18(8):5636-5644. doi: 10.1166/jnn.2018.15445.
In this paper, a sol-gel derived mesoporous polymeric carbon nitride has been investigated as a photocatalyst for CO2 photocatalytic reduction. Noble-metal Pt nanoparticles were deposited on carbon nitride (sg-CN) in order to investigate the performance of both Pt-sg-CN and sg-CN for photocatalytic CO2 reduction. Physicochemical properties of prepared nanocomposites were comprehensively characterized by using powder XRD, N2 physisorption, UV-Vis DRS, ICP-AES, FTIR, solid-state NMR, SEM, TEM and photoelectrochemical measurements. Compared with pure sg-CN, the resulting Pt-loaded sg-CN (Pt-sg-CN) exhibited significant improvement on the CO2 photocatalytic reduction to CH4 in the presence of water vapor at ambient condition under UV irradiation. 1.5 wt.% Pt-loaded sg-CN (Pt-sg-CN) photocatalyst formed the highest methane yield of 13.9 μmol/gcat. after 18 h of light irradiation, which was almost 2 times and 32 times improvement in comparison to pure sg-CN and commercial TiO2 Evonik P25, respectively. The substantial photocatalytic activity of Pt-sg-CN photocatalyst for the yield product of the CO2 photocatalytic reduction was attributed to the efficient interfacial transfer of photogenerated electrons from sg-CN to Pt due to the lower Fermi level of Pt in the Pt-sg-CN hybrid heterojunctions as also evidenced by photo-electrochemical measurements. This resulted in the reduction of electron-hole pairs recombination for effective spatial charge separation, consequently increasing the photocatalytic efficiency.
在本文中,对一种通过溶胶-凝胶法制备的介孔聚合氮化碳作为二氧化碳光催化还原的光催化剂进行了研究。为了研究负载贵金属铂的氮化碳(Pt-sg-CN)和氮化碳(sg-CN)对光催化还原二氧化碳的性能,将贵金属铂纳米颗粒沉积在氮化碳上。通过粉末X射线衍射(XRD)、氮气物理吸附、紫外可见漫反射光谱(UV-Vis DRS)、电感耦合等离子体发射光谱(ICP-AES)、傅里叶变换红外光谱(FTIR)、固态核磁共振(NMR)、扫描电子显微镜(SEM)、透射电子显微镜(TEM)和光电化学测量等手段对制备的纳米复合材料的物理化学性质进行了全面表征。与纯sg-CN相比,在紫外光照射下的环境条件下,所制备的负载铂的sg-CN(Pt-sg-CN)在有水蒸气存在时对二氧化碳光催化还原为甲烷表现出显著的性能提升。负载1.5 wt.%铂的sg-CN(Pt-sg-CN)光催化剂在光照18小时后形成了最高的甲烷产率,为13.9 μmol/gcat.,与纯sg-CN和商业二氧化钛赢创P25相比,分别提高了近2倍和32倍。Pt-sg-CN光催化剂对二氧化碳光催化还原产物的大量光催化活性归因于光生电子从sg-CN到Pt的有效界面转移,这是由于Pt-sg-CN混合异质结中Pt的费米能级较低,光电化学测量也证明了这一点。这导致了电子-空穴对复合的减少,实现了有效的空间电荷分离,从而提高了光催化效率。